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ABSTRACT
Probabilistic linear discriminant analysis (PLDA) is a genera-

tive model to explain between and within class variations. When the
underlying latent variables are modelled by standard Gaussian distri-
butions, the PLDA recognition scores can be evaluated as a dot prod-
uct between a high dimensional PLDA feature vector and a weight
vector. A key contribution of this paper is showing that the high di-
mensional PLDA feature vectors can be equivalently (in a non-strict
sense) represented as the second-degree polynomial kernel induced
features of the vectors formed by concatenating the two input vectors
constituting a trial. This equivalence relationship paves the way for
the speaker recognition problem to be viewed as a two-class support
vector machine (SVM) training problem where higher degree poly-
nomial kernels can give better discriminative power. To alleviate
the large scale SVM training problem, we propose a kernel evalua-
tion trick that greatly simplifies the kernel evaluation operations. In
our experiments, a combination of multiple second degree polyno-
mial kernel SVMs performed comparably to a state-of-the-art PLDA
system. For the analysed test case, SVMs trained with third degree
polynomial kernel reduced the EERs on average by 10% relative to
that of the SVMs trained with second degree polynomial kernel.

Index Terms— speaker recognition, large scale SVMs, PLDA

1. INTRODUCTION

Originally proposed in the face recognition domain [1], probabilis-
tic linear discriminant analysis (PLDA) is a generative model widely
adopted in speaker verification [2]. It calculates the likelihood that
the given observations share the same speaker identity variable. Un-
der these assumptions, the jth recording of the ith speaker is repre-
sented as

aij = µ+ Fhi +Gwij + ϵij (1)

where µ is the overall mean of the training set i-vectors [3]. The
columns of F and G represent a basis for the between and within
speaker subspaces respectively. The term hi is a latent variable that
depends only on the speaker identity whereas the latent variable wij

depends both the speaker identity and on the session. The remaining
variability is explained with a zero-mean Gaussian noise term ϵij
with a diagonal covariance matrix Σ. The PLDA model parameters
{µ,F,G,Σ} are estimated via an expectation-maximization (EM)
algorithm with a maximum likelihood (ML) training criterion.

As proposed in [4, 5], the use of Gaussian distributions to model
the latent variables reduces the PLDA scores to a dot-product be-
tween a PLDA feature vector that depends on the enrollment and

This work was supported in part by Contract No. D11PC20192
DOI/NBC under the RATS program. The views, opinions, findings and rec-
ommendations contained in this article are those of the author(s) and should
not be interpreted as representing the views or policies, either expressed or
implied, of the DOI/NBC.

test vectors, and a weight vector derived from the PLDA model pa-
rameters. Unlike generative PLDA, the parameters of this model are
estimated via discriminative training techniques such as logistic re-
gression [4] and support vector machines (SVMs) [5].

In this paper we build upon prior work related to discrimi-
natively trained PLDA models [4]. One of the key contributions
of our paper is showing the association between PLDA and poly-
nomial kernel SVM approaches, which leads to formulating the
speaker recognition problem as a two-class 2nd degree polyno-
mial kernel SVM training problem where each training sample
is a concatenation of two i-vectors. Another key contribution is
that this work presents the opportunity to significantly improve
performance using higher degree polynomial kernels once the
large scale SVM training problem is addressed (as we previously
showed on a language recognition task [6]).

Unfortunately the scale of the task stands as a challenge, as
the resulting SVM problem grows quadratically with the num-
ber of the training set samples. Training SVMs with millions of
training examples is an active research area [7, 8]. Another key
contribution is considerations for training large-scale non-linear
kernel SVMs. To alleviate the large scale SVM training prob-
lem we further propose a kernel evaluation trick that simplifies
kernel evaluations greatly.

Our experiments show that third degree polynomial kernel
SVMs reduce the EER by 10% relative to second degree polyno-
mial kernel SVMs. We also found that the performance of a com-
bination of multiple second degree polynomial kernel SVM sys-
tem was comparable to our state-of-the-art PLDA based baseline
system.

This paper is organized as follows: Section 2 presents a de-
scription of the related work on generative and discriminative PLDA
approaches. Section 3 focuses on relating generative PLDA and
second-degree polynomial kernel methods. Section 4 describes con-
siderations for large scale problems. Finally, Section 5 reports our
experimental results. Section 6 summarizes our concluding remarks.

2. BACKGROUND AND RELATED WORK

In this section we briefly review the generative [1] and discriminative
PLDA [4, 5] approaches. The discriminative approach is based on
a reformulation of the PLDA log-likelihood ratio as a dot product
between a high dimensional vector and a weight vector.

Let us suppose that we are given a corpus of N recordings with
each recording represented as an i-vector [3]. The PLDA model
of Equation (1) decomposes each i-vector into a signal component,
µ + Fhi, that depends on the speaker identity and a noise com-
ponent, Gwij + ϵij , that represents the within speaker variability.
In testing whether two recordings, a and b, come from the same
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speaker, PLDA estimates a log-likelihood ratio

sPLDA = log
p(a,b|Hs)

p(a,b|Hd)
. (2)

where Hs and Hd represent the same speaker and different speaker
hypotheses respectively.

As shown previously in [4, 5], the PLDA score in Equation (2)
can then be written as a dot product between a PLDA feature vector,
ΨPLDA, and a weight vector, wPLDA, i.e.,

sPLDA =< wPLDA(µ,F,G,Σ),ΨPLDA(a,b) > . (3)

The weight vector wPLDA is initialized from the PLDA model pa-
rameters and then refined by discriminative training. The PLDA fea-
ture vector ΨPLDA is given by

ΨPLDA(a,b) =


vec(abT + baT )
vec(aaT + bbT )

a+ b
1

 (4)

where vec(.) stands for the vectorization of a matrix by stacking its
columns into a vector. The dimensionality of a PLDA feature vector
is given by |ΨPLDA(a,b)| = 2 ·D2+D+1, which quickly grows
large with increasing i-vector dimensionality D.

3. UNIFYING PLDA AND POLYNOMIAL KERNELS

In this section we focus our analysis on relating generative PLDA
to second-degree polynomial kernel methods. Here we first review
support vector machines (SVMs) and feature space representations
of input vectors when a polynomial kernel function is used in SVM
training.

Suppose that we are given (x1, ℓ1), (x2, ℓ2), ..., (xM , ℓM ),
where {xm} ∈ ℜK are K dimensional training samples and
{ℓm} ∈ {−1,+1} are their corresponding labels. The training
objective of SVMs [9] is a quadratic optimization problem that de-
pends on the data only through feature space dot products, which can
be replaced with any non-linear kernel function. A kernel function
is evaluated for each pair of training examples as

K(x,y) =< Ψ(x),Ψ(y) > (5)

where < Ψ(x),Ψ(y) > represents a dot product in a high dimen-
sional feature space.

3.1. Support Vector Machines with Polynomial Kernels

One of the strengths of SVMs is that the input vectors {xm} can
be non-linearly mapped onto vectors in a high dimensional feature
space where the training task is formulated as estimating hyper-
planes [10]. Through the use of the so-called kernel trick, the map-
ping is not explicitly needed. Although not needed in general, it is
possible to construct feature vectors Ψ(x) for some kernel functions.

One standard class of kernel functions is the polynomial kernel
function with degree d formulated as [11]

Kd(x,y) = Ψd(x)
TΨd(y) = (xTy + 1)d, (6)

The polynomial kernel with d = 1 corresponds to a linear kernel.
The feature vector for d = 2 consists of linear and quadratic terms,
and can be represented as [11]

Ψd=2(x) =

vec(Upper(xxT ))
x
1

 (7)

where the operator Upper() extracts the upper triangular (including
diagonal) entries of a matrix.

3.2. Association of the PLDA to the Second Degree Polynomial
Kernel Induced Features

To show the association between the PLDA and the polynomial ker-
nel induced feature vectors with d = 2, we decompose the PLDA
feature vector in Equation (4) into its components as

ΨPLDA(a,b) =

{aibj + biaj}
{aiaj + bibj}
{ai + bi}

D

i,j=1

(8)

Notice that the individual feature dimensions are conjunctions of the
terms aibj , aiaj , bibj , ai, and bi for i, j = 1, 2, ..., D. The key
in relating the PLDA model to the polynomial kernel induced fea-
ture vector lies in recognizing that the vector ΨPLDA(a,b) can be
equivalently represented as

Ψ(a,b) ≡


vec(Upper(

[
a
b

] [
a
b

]T

))[
a
b

]
1

 (9)

Equations (7) and (9) reveal that Ψ(a,b) is the second degree
polynomial kernel induced feature vector of the input vector x =[
aT bT

]T .
The 2nd degree polynomial kernel induced feature vector and

the PLDA feature vector share the terms vec(Upper(xxT )). The
only difference is that the former has terms of the form a and b
whereas the latter has a+ b. Therefore the two are equivalent in a
non-strict sense, i.e., except for a rather insignificant difference.

3.3. Use of High Degree Polynomial Kernels

Having shown the equivalence of the PLDA feature vector and the
2nd degree polynomial kernel induced feature vector, it is natural
to ask whether the classifier performance would benefit from using
higher degree polynomial kernels. In our earlier work in a language
recognition task [6], we observed a relative reduction of more than
20% in EER when the polynomial degree was raised from 2 to 3.
We furthermore obtained the lowest EER when the degree of the
polynomial kernel was increased to d = 5 (with 37% relative im-
provement in EER over d = 2). While this is a challenging problem
for speaker recognition, we explore the opportunity for using higher
degree polynomial kernels for speaker recognition.

The 2nd degree polynomial kernel induced feature vectors are
composed of monomials of degree 0, 1, and 2. When the degree of
the polynomial kernel is raised to d = 3, the kernel induced fea-
ture vectors also includes monomials of degree 3, i.e., terms in the
form of aiajak, aiajbk, aibjbk, and bibjbk. Increasing the model
complexity this way may yield performance gains provided suffi-
cient training data is available.

4. CONSIDERATIONS FOR LARGE SCALE TASKS

The discriminative PLDA approaches of [4, 5] compute high dimen-
sional feature vectors for a total of N2 i-vector pairs. The dimen-
sionality of these feature vectors grow quadratically with the dimen-
sion of the i-vectors. However, the technique proposed in this paper
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operates in the low-dimensional space: The equivalence relationship
of the previous section makes it possible to concatenate the two i-
vectors constituting a trial and train SVMs using these.

4.1. A Kernel Evaluation Simplification Trick

Although there are techniques to train linear SVMs using millions
of samples within a few seconds, it is highly challenging to develop
efficient nonlinear SVM training algorithms that can handle millions
of input samples. We propose a kernel evaluation trick that reduces
the computations in kernel evaluations to two look-ups, two addi-
tions, and a power operation. It thereby avoids the need to explicitly
generate concatenated vectors from i-vectors.

The kernel K(x,y) = ΨT (x)Ψ(y) for two trials x =[
aT
i bT

j

]T and y =
[
aT
k bT

m

]T can be evaluated as

K(x,y) = (< ai,ak > + < bj ,bm > +1)d (10)

= (Qij +Qkm + 1)d

where Q is the N -by-N i-vector Gram matrix and where the sub-
script ij refers to the element of Q in the ith row and the jth col-
umn. With this simplification the proposed technique can be made
scalable to problems with millions of trials.

4.2. Further Considerations

The kernel evaluation simplification trick of the previous section al-
leviates the SVM training problem with millions of trials. However,
current speaker recognition systems with tens of thousands of input
recordings require training with hundreds of millions of trials.

One common approach adopted in large scale tasks is to train
SVMs with manageable training set sizes and to combine them in
a second phase. As we found out in our experiments, although the
average performance of the individual SVMs is not outstanding, a
combination of them can achieve a performance comparable to state-
of-the-art systems. As our experiments in Section 5 show, an equal-
weight combination of the top B% of the SVMs based on a held-out
set performed comparably to a generative PLDA system.

5. EXPERIMENTS

The task we focus on in our experiments is the speaker recognition
track of the DARPA sponsored Robust Automatic Transcription of
Speech (RATS) program. The training data used in the experiments
consist of 10,143 recordings from 1,085 speakers from the first three
data releases. The evaluation dataset consists of 5,593 recordings
from 68 speakers. Each audio recording is 120 seconds in duration
and is obtained by passing a clean source recording through one of
the eight highly degraded and/or noisy high frequency communica-
tion channels. The evaluation set consists of 6,028 trials where each
evaluation trial scores a given test speech segment against enrollment
models consisting of 6 speech segments.

We conducted speaker recognition experiments with a standard
MFCC-based system. We generated 800 dimensional i-vectors and
performed an LDA transform on them to reduce the dimensionality
to 500. We found that within-class covariance normalization and
unit length normalization steps improved the PLDA performance but
they were detrimental to SVM performance. 1

1Through personal communication, we were informed that the relative
gains reported in [4, 5] are not significant over generative PLDA when the
i-vectors are unit length normalized before applying generative PLDA.

Table 1. The performance of the generative PLDA systems.

min DCF(x1000) EER(%)
Generative MultiPLDA 25.0 4.7
Generative AvgPLDA 30.2 4.8

We built two generative PLDA systems as reference baselines.
The first one, which we refer to as multi-session enrollment PLDA
(denoted as MultiPLDA), scores each test recording against an en-
rollment model trained from 6 sessions. The second one, which we
refer to as average PLDA (denoted as AvgPLDA), scores the given
test recording against each of the 6 enrollment recordings indepen-
dently and averages the resulting 6 pairwise scores. We report the
baseline performances in Table 1.

5.1. The Effect of the Degree of the Polynomial Kernel

We trained SVMs with a varying number of randomly selected i-
vectors. We analysed trends in the performance (i) as we increased
the number of training set i-vectors and (ii) as we increased the de-
gree of the polynomial kernel.

The performance statistics in terms of EER (%) are shown using
box plots in Figure 1. On each box, the central mark is the median,
and the edges of the box are the 25th and 75th percentiles. The tick
marks joined by dotted lines represent the lower and upper bounds
on the performance of the set of systems tested.

We first note that, for all degrees of polynomial kernels, the per-
formance improves as the number of randomly selected i-vectors in-
creases. Unfortunately, doubling the number of training set i-vectors
beyond 2, 000 resulted in training times of a week or more and there-
fore we do not consider these as useful. We expect the improving
performance trend to continue once efficient nonlinear kernel SVM
algorithms become available.

Secondly we note that, for all training set sizes, the performance
improves when the degree of the polynomial kernel is increased from
d = 2 to d = 3. In particular, when N = 2, 000 i-vectors are used
in SVM training, the median EER dropped from 7.5% to 6.7% (a
relative EER improvement of 10%).

We observe from Figure 1 that the performance may degrade
when the polynomial kernel degree is increased to d = 4 with small
training set sizes. However, when the training set is sufficiently large
(e.g., N = 2000) we start to see performance improvements. Based
on the trends with N = 2000 we expect higher degree polynomial
kernel SVMs trained with sufficiently large training sets to provide

N=500 N=1000 N=2000 N=500 N=1000 N=2000 N=500 N=1000 N=2000

4

6

8

10

12 d=2

PLDA Baseline (N=10000)

d=4d=3

Fig. 1. The effect of the number of training set i-vectors and the
degree of the polynomial kernel on EER (%)
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Table 2. Performance of linear score combination of SVMs trained with randomly selected i-vectors.

Equal Weight Top 30%
min DCF(x1000) EER(%) min DCF(x1000) EER(%)

d = 2, N = 1, 000 27.8 5.5 26.8 5.1
d = 3, N = 1, 000 30.5 5.6 30.2 5.7
d = 4, N = 1, 000 34.7 5.6 34.5 5.6
d = 2, N = 2, 000 26.5 5.0 25.8 5.1
d = 3, N = 2, 000 28.2 5.6 27.8 5.3
d = 4, N = 2, 000 32.4 5.6 32.5 5.4

greater relative improvements.
The trends in Figure 1 highlight opportunities to significantly

improve performance using higher degree polynomial kernels once
the issue of scale is addressed. In the LID task [6] we found that there
was a significant performance improvement when the degree of the
polynomial kernel was changed from d = 2 to d = 3 to d = 4. We
furthermore found that these improvements become more significant
when the amount of training size was increased.

5.2. Combining SVMs

We investigated methods to combine multiple SVMs trained with
randomly selected i-vectors. We found that linear score combina-
tion provided significant gains. In our experiments we explored in
the combination performance (i) as we increased the number of ran-
domly selected i-vectors and (ii) as we increased the degree of the
polynomial kernel. We investigated two kinds of score combination:
Combining all SVMs with equal weight and combining only top per-
forming SVMs, which are selected based on their performance on a
separate held-out set.

We report the results of our score combination experiments in
Table 2. We first observe that the proposed SVM training tech-
nique performed comparably with our reference baselines with both
of the combination strategies. A comparison of the results in the
d = 2, N = 1, 000 and d = 2, N = 2, 000 rows of Table 2 indicate
that the combination performance improves if the individual SVMs
see more training i-vectors. A comparison of the results reported in
the “Equal Weight” columns of Table 2 with their counterparts in the
“Top 30%” columns shows that using best SVMs slightly improves
the combination performance.

The results in the d = 3 and d = 4 rows of Table 2 also indicate
significant improvement over individual SVM performances. How-
ever, we observe that linear score combination does not work well
for higher degree polynomial kernel SVMs. Although the individual
SVMs performances with d = 3 are better than those with d = 2,
linear score combination gives better results when d = 2.

6. CONCLUSIONS AND FUTURE WORK

In this paper we showed that the PLDA feature vectors can be equiv-
alently (in a non-strict sense) represented as second degree poly-
nomial kernel induced features of the vectors formed by concate-
nating the two input vectors constituting a trial. This reduced the
speaker recognition problem to a two-class SVM training problem
with improved discriminative power using higher degree polynomial
kernels. Furthermore, a kernel evaluation trick is proposed to avoid
forming N2 concatenated vectors from N input vectors in large scale
tasks.

Based on the trends that we observed in our experiments, we hy-
pothesize that higher degree polynomial kernel SVMs trained with
sufficiently large training sets can provide greater relative improve-
ments. Our ongoing research is focused on an investigation of prin-
cipled SVM combination approaches to maximize the diversity as
well as the generalization capabilities of the combined SVM system.
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