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ABSTRACT

In this paper we propose fully Bayesian speaker comparison of su-
pervectors, which we refer to as SV-BSC, as a method for estimat-
ing whether a test cut was generated by the same speaker as an en-
rollment set. We derive the SV-BSC log-likelihood ratio of same-
speaker to different-speaker hypotheses, and present solutions for
model training and Bayesian scoring. We then show that if speaker
and channel variability are assumed to inhabit a total variability sub-
space, SV-BSC scoring reduces to a form which requires only low-
computation subspace operations. Finally, we show that common
speaker recognition techniques such as Joint Factor Analysis (JFA)
and i-vector Probabilistic Linear Discriminant Analysis (PLDA) are
approximations to this full solution under certain additional assump-
tions. Experiments on the NIST 2010 SRE show SV-BSC to outper-
form a PLDA system.

Index Terms— Bayesian speaker comparison, speaker recogni-
tion, total variability, supervector, i-vector.

1. INTRODUCTION

Traditional speaker recognition systems extracted speaker-specific
information using Gaussian mixture models (GMMs) [1]. Subse-
quent work assumed speaker and/or channel variability to inhabit
lower dimension subspaces of the supervector of concatenated
GMM means, allowing scoring to emphasize discriminative direc-
tions in supervector space [2]. Building on the subspace assumption,
the i-vector was introduced as a low dimensional speaker-specific
feature extracted from the supervector domain [3]. Due to their
low-dimensionality, i-vectors allow for sophisticated modeling and
scoring, and have become widely used. A drawback of the i-vector,
however, is that it is derived as a point-estimate, and excludes uncer-
tainty due to observation noise, thereby ignoring cut duration.

In this paper, we propose fully Bayesian speaker comparison of
supervectors. As opposed to the use of i-vectors, SV-BSC retains du-
ration information of enrollment and test cuts throughout modeling
and scoring in the form of observation noise. Under the subspace
assumption, we show SV-BSC scoring to reduce to a low compu-
tation subspace operation. We then discuss the role of SV-BSC as
a generalized framework for many speaker recognition techniques,
and show that certain data approximations result in existing meth-
ods such as PLDA [4], [5] and full Gaussian scoring (FGS) [6] or
JFA [2]. Experimentation on the NIST 2010 SRE reveals SV-BSC
to outperform PLDA.

This work was sponsored by the Department of Defense under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not necessarily endorsed
by the United States Government.

2. SUPERVECTOR BAYESIAN SPEAKER COMPARISON

In this section, we present fully Bayesian speaker comparison in the
supervector space, which we refer to as SV-BSC. We introduce our
statistical framework, derive the SV-BSC log-likelihood ratio, and
present solutions for model training and scoring.

2.1. Statistical Framework

In this study, we build upon the use of maximum a posteriori (MAP)
adaptation of GMMs[1]. We assume speaker GMMs to differ only
with respect to means, and alignment to Gaussian mixtures is de-
termined using the universal background model (UBM). We use the
additive noise model, as in [7]. Speaker supervectors are normally
distributed with mean θ and across-class covariance Σs, so that
p(µ) = N (µ; θ,Σs). An observed supervector xt ∈ RK is de-
graded by additive channel and observation noise. The channel com-
ponent is normally distributed with zero mean and within-class co-
variance Σc. The cut-specific observation noise is normally dis-
tributed with zero mean and covariance Σn,t, leading to the marginal
distribution

p(xt) = N (xt; θ,Σs + Σc + Σn,t). (1)

The observation noise is defined as Σn,t = N−1
t Σ0, where Nt is a

diagonal matrix comprised of mixture counts for xt, and Σ0 is the
Universal Background Model (UBM) covariance matrix [1].

In the speaker comparison framework, an enrollment set of ob-
served supervectors is given from a known speaker, denoted byD =
{x1, . . . ,xN}. Here, xi is the ith supervector for the given enroll-
ment set, and is observed with noise Σn,i. Conditioned on the model
mean of the speaker, µ, the elements ofD are assumed i.i.d., leading
to the conditional distribution

p(D|µ) =
NY
i=1

p (xi|µ) =

NY
i=1

N (xi; µ,Σc + Σn,i). (2)

The goal of the speaker comparison problem is to determine whether
a supervector xt was produced by the same speaker as the enrollment
set. The possible hypotheses are

H0 : D and xt are produced by different speakers
H1 : D and xt are produced by the same speaker.

Using a Bayesian approach, the speaker comparison problem re-
duces to determining the log-likelihood ratio (LLR)

L(xt|D) = log
p (xt|D,H1)

p (xt|D,H0)
, (3)
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which can be solved in a straight-forward manner via marginaliza-
tion of the speaker model mean

L(xt|D) = log

R
p(D|µ)p(xt|µ)p(µ)dµ

p(D)p(xt)
. (4)

Equivalently, by applying Bayes’ rule as in [8], the LLR can be ex-
pressed as

L(xt|D) = log

R
p (xt|µ) p (µ|D) dµ

p (xt)
. (5)

When given in this form, the LLR offers valuable insight into the
speaker comparison problem. The term p (µ|D) can be interpreted
as an initial model training step. The term p (xt|µ) can then be
interpreted as Bayesian scoring. Finally, the denominator represents
the likelihood of a random speaker in a random channel.

2.2. Model Training

Model training consists of fitting a parametric model to the training
set D, and determining the posterior probability distribution of the
enrollment set speaker mean, p (µ|D). To simplify notation, suffi-
cient statistics can be defined to fully characterize set D. We define
the 0th and 1st order statistics, respectively, as

AD,0 = Σc

NX
i=1

(Σc + Σn,i)
−1 (6)

AD,1 = Σc

NX
i=1

(Σc + Σn,i)
−1 xi.

The reason for these exact formulas will be made clear in this sec-
tion.

The posterior distribution of the enrollment set speaker mean is
given by p (µ|D) ∝ p (D|µ) p (µ). Applying (1), and (2) leads to

p (µ|D) ∝
NY
i=1

p (xi|µ) p (µ) (7)

∝ exp

 
−1

2

"
NX
i=1

(µ− µD)T Σ−1
D (µ− µD)

#!
,

where

ΣD = Σs

`
Σs + A−1

D,0Σc

´−1
A−1
D,0Σc, (8)

and

µD =Σs

`
Σs + A−1

D,0Σc

´−1
A−1
D,0AD,1 (9)

+ A−1
D,0Σc

`
Σs + A−1

D,0Σc

´−1
θ.

Since p (µ|D) is a valid distribution, and must integrate to unity, it
can be concluded that p (µ|D) = N (µ; µD,ΣD). Here, µD repre-
sents the mean of the conditional distribution p (µ|D), and ΣD rep-
resents the uncertainty present when estimating µ from the available
data inD. Note that AD,0 and AD,1 are the only speaker-dependent
terms in (8) and (9), and can be considered sufficient statistics since
they fully parameterize the enrollment set D.

It is interesting to note that (7)-(9) represent a generalized ver-
sion of Bayesian parameter estimation discussed in [8], where our
framework includes nonstationary, cut-specific observation noise.
For the special case where Σn,i = 0, the two are equivalent.

2.3. Bayesian Scoring

Once the posterior distribution of the enrollment speaker model
mean µ is obtained, Bayesian scoring reduces to determining the
LLR in (5). The integral in the numerator of (5) can be interpreted as
the sum of two independent normally distributed random variables,
which itself is a normally distributed random variableZ

p (xt|µ) p (µ|D) dµ = N (xt; µD,Σc + ΣD + Σn,t) (10)

so that

L(xt|D) = log
N (xt; µD,Σc + ΣD + Σn,t)

N (xt; θ,Σs + Σc + Σn,t)
. (11)

Thus, the general case LLR can be expressed as the ratio of two
Gaussian distributions.

3. SV-BSC UNDER THE SUBSPACE ASSUMPTION

In the previous section, Bayesian speaker comparison is derived in
the supervector space. Due to the high dimensionality of supervec-
tors, the computational load required by such a system may be pro-
hibitively large. Instead, many studies have assumed speaker and
channel variabilities to lie within subspaces [2], [7]. In this sec-
tion, we derive supervector Bayesian speaker comparison for the
case when speaker and channel variabilities are assumed to inhabit a
reduced dimension subspace.

When performing analysis of subspaces, it is often helpful to use
the Woodbury matrix inversion lemma, which can be used to derive
the following identity

VT
“
C + VDVT

”−1

(12)

= D−1
“
D−1 + VTC−1V

”−1

VTC−1

for invertible matrices C and D. By substituting C = εI into (12),
we obtain

lim
ε→0

VT
“
εI + VDVT

”−1

(13)

= lim
ε→0

1

ε
D−1

„
D−1 +

1

ε
VTV

«−1

VT = D−1V+,

where the + operator denotes the Moore-Penrose pseudoinverse.

3.1. The Subspace Assumption

Under the subspace assumption, variability covariances become

Σs = UΦsU
T (14)

Σc = UΦcU
T .

where U ∈ RK×Q defines the total variability subspace [3], and
where Φc ∈ RQ×Q and Φs ∈ RQ×Q denote the subspace within-
class and across-class covariance matrices, respectively. In order
to derive certain results in this section, the speaker variability model
will at times be extended to include a diagonal tail Σs = UΦsU

T +
εI in the limit ε→ 0. It is assumed that the across-class mean exists
within the total variability subspace, so that θ = Uγ, where γ is
the across-class mean in subspace defined by U. Furthermore, it is
assumed that Φc is full rank and invertible.
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We derive subspace versions of the sufficient statistics AD,0 and
AD,1 by projecting them into the total variability space. Using (12)
and (14), the subspace sufficient statistics are given by

BD,0 = U+AD,0U (15)

=

NX
i=1

“
Φ−1
c + UTΣ−1

n,iU
”−1

UTΣ−1
n,iU,

and

BD,1 = U+AD,1 (16)

=

NX
i=1

“
Φ−1
c + UTΣ−1

n,iU
”−1

UTΣ−1
n,ixi.

3.2. Subspace SV-BSC

Under the subspace assumption, and using (12) and (13), the model
mean posterior covariance simplifies to

ΣD = UΦs

`
Φs + B−1

D,0Φc

´−1
B−1
D,0ΦcU

T . (17)

and the posterior mean can be expressed as

µD = U
h
Φs

`
Φs + B−1

D,0Φc

´−1
B−1
D,0BD,1 (18)

+B−1
D,0Φc

`
Φs + B−1

D,0Φc

´−1
γ
i
.

Note that the posterior mean and covariance both exist in the low
dimensional subspace defined by U. Subspace versions of these pa-
rameters are defined as

ΦD = Φs

`
Φs + B−1

D,0Φc

´−1
B−1
D,0Φc, (19)

and

ξD =Φs

`
Φs + B−1

D,0Φc

´−1
B−1
D,0BD,1 (20)

+ B−1
D,0Φc

`
Φs + B−1

D,0Φc

´−1
γ,

so that ΣD = UΦDUT and µD = UξD . In the above expres-
sions, the term B−1

D,0Φc represents uncertainty due both to channel
variability and observation noise of the enrollment set. For long du-
ration cuts, when observation noise is small, this term approaches
Φc. Conversely, for shorter cuts, the term represents an amplified
version of the within-class covariance matrix.

Having shown that the subspace assumption leads the posterior
mean and covariance matrix to both exist within the total variability
subspace, we now prove that the SV-BSC LLR also exists within this
subspace. Expansion of the Gaussian distributions in (11) leads to

L(xt|D) =− 1

2
log
|Σn,t + Σc + ΣD|
|Σn,t + Σc + Σs|

(21)

− 1

2
µTD (Σc + ΣD + Σn,t)

−1 (µD − 2xt)

+
1

2
θT (Σs + Σc + Σn,t)

−1 (θ − 2xt)

− 1

2
xTt
ˆ
(Σs + Σc + Σn,t)

−1

− (Σc + ΣD + Σn,t)
−1˜xt.

Applying (12), (14), and Sylvester’s determinant theorem [9], the
first term becomes

−1

2
log
|Σn,t + Σc + ΣD|
|Σn,t + Σc + Σs|

= −1

2
log

˛̨
ΦD + B−1

D,0Φc

˛̨˛̨
Φs + B−1

D,0Φc

˛̨ . (22)

Using (12) and (14), the second term in (21) reduces to

−1

2
µTD (Σc + ΣD + Σn,t)

−1 (µD − 2xt) (23)

= −1

2
ξTD
`
ΦD + B−1

t,0Φc

´−1
(ξD − 2zt) ,

where

zt = B−1
t,0Bt,1 =

“
UTΣ−1

n,tU
”−1

UTΣ−1
n,txt. (24)

Note that zt is equivalent to the pseudoinverse form of the total vari-
ability i-vector proposed in [6]. Similarly, the third term is simplified
as

1

2
θT (Σs + Σc + Σn,t)

−1 (θ − 2xt) (25)

=
1

2
γT
`
Φs + B−1

t,0Φc

´−1
(γ − 2zt)

Finally, applying (12) and (14) reduces the fourth term to

−1

2
xTt
ˆ
(Σs + Σc + Σn,t)

−1 − (Σc + ΣD + Σn,t)
−1˜xt

(26)

=− 1

2
zTt

h`
ΦD + B−1

t,0Φc

´−1 −
`
Φs + B−1

t,0Φc

´−1
i
zt

By substituting (22)-(26) into (21), and grouping terms into Gaus-
sian distributions, the LLR from (11) reduces to

L(xt|D) = log
N
`
zt; ξD,ΦD + B−1

t,0Φc

´
N
`
zt; γ,Φs + B−1

t,0Φc

´ . (27)

Thus, if speaker and channel variability exits within a subspace,
the SV-BSC LLR represents a low-computation operation involving
subspace parameters, hyperparameters, and sufficient statistics.

4. RELATIONSHIP TO EXISTING TECHNIQUES

In this section we show that SV-BSC serves as a generalized frame-
work for many well-known speaker recognition methods. Under
certain data approximations, subspace SV-BSC reduces to specific
existing scoring techniques.

4.1. The Long-Duration Approximation: I-vector BSC

There may exist scenarios when adequately long enrollment and test
cuts are available for speaker comparison. In such cases, each GMM
mixture of the UBM is sampled a large number of times during MAP
adaptation of supervectors. The definition of observation noise from
Sec. 2.1 can be expressed alternatively as Σn,i = 1

T
N̄−1
i Σ0, where

T is the number of frames used to obtain supervector xi, and N̄
contains the frame-averaged mixture counts. In the limit as T →∞,
corresponding to long-duration cuts, observation noise disappears,
i.e. Σn,i = 0.
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Male Set Female Set Pooled Set
Method EER (%) minDCF oldDCF EER (%) minDCF oldDCF EER (%) minDCF oldDCF

With Length Normalization
PLDA 2.08 0.380 0.099 3.05 0.485 0.148 2.67 0.495 0.133
SV-BSC 1.94 0.372 0.094 2.81 0.481 0.142 2.45 0.474 0.124

Without Length Normalization
PLDA 5.14 0.526 0.230 5.37 0.554 0.223 5.24 0.541 0.228
SV-BSC 4.48 0.496 0.207 4.89 0.529 0.206 4.70 0.526 0.208

Table 1. Speaker Recognition Results for SV-BSC

If enrollment and test cuts are assumed long in duration, so that
observation noise approaches zero, then the 0th order statistics be-
come BD,0 = NI and Bt,0 = I. Using the long duration approx-
imation, the subspace hyperparameters from (19) and (20) reduce
to

ΦD =
1

N
Φs

„
Φs +

1

N
Φc

«−1

Φc, (28)

and

ξD =
1

N
Φs

„
Φs +

1

N
Φc

«−1

BD,1 (29)

+
1

N
Φc

„
Φs +

1

N
Φc

«−1

γ.

and the speaker comparison LLR becomes

L(xt|D) = log
N (Bt,1; ξD,ΦD + Φc)

N (Bt,1; γ,Φs + Φc)
. (30)

For the case of single-cut enrollment, i.e. N = 1, the scoring method
defined by (30) is similar to PLDA [4], [5]. If the term Bt,1 is re-
placed by the total variability i-vector from [3], the two methods are
equivalent.

4.2. The Large Enrollment Set Approximation: Full Gaussian
Scoring

The commonly used train-test paradigm for speaker recognition as-
sumes a perfectly known model, which theoretically requires the
availability of infinite enrollment data. This corresponds to the pro-
posed SV-BSC framework in the limit N → ∞, so that ΦD = 0
and ξD = zD . The LLR then reduces to

L(xt|D) = log
N
`
zt; zD,B

−1
t,0Φc

´
N
`
zt; γ,Φs + B−1

t,0Φc

´ . (31)

Note that the scoring technique defined by (31) is equivalent to full
Gaussian scoring (FGS) proposed in [6], or to JFA using a point
estimate for speaker factors and integrating over channel factors [2].

5. EXPERIMENTAL RESULTS

This section presents experimental results for SV-BSC on the NIST
SRE 2010 extended evaluation[10]. The baseline speaker recogni-
tion system uses 39-dimensional telephone-bandwidth cepstral fea-
tures including deltas, with feature mean and variance normaliza-
tion. The background model is trained using Switchboard II as well
as SRE telephone data from 2004, 2005, and 2006. As a baseline

system, we use full-rank PLDA scoring with 600 dimensional i-
vectors and a further LDA dimension reduction to 200. Total vari-
ability U is estimated using the same data as for the background
model, as are the subspace across-class and within-class sample co-
variance matrices Φs and Φc. Some results include i-vector length
normalization [5]. Since statistical modeling of i-vectors can be con-
sidered more straightforward without length normalization, results
are also reported without this processing step. For the case of SV-
BSC, length normalization is performed by normalizing Bt,1 to unit
length.

Table 1 provides speaker recognition results for SRE 2010 tele-
phone data with single-cut enrollment. Results are reported in terms
of equal error rate (EER), as well as the 2010 NIST SRE minimum
decision cost function (minDCF) score, normalized by 103. It can
be observed that SV-BSC yields improved performance across the
reported conditions, relative to the baseline. Specifically, SV-BSC
provides 8%-12% relative improvements in EER.

6. CONCLUSION

This paper has proposed fully Bayesian speaker comparison of su-
pervectors as a method for estimating whether a test cut was gener-
ated by the same speaker as an enrollment set. We have derived the
same-speaker to different-speaker log-likelihood ratio, and presented
solutions for model training and Bayesian scoring. Under the sub-
space assumption, SV-BSC scoring is shown to exist within the total
variability subspace, requiring only low-computation subspace op-
erations. Common speaker recognition techniques such as JFA and
i-vector PLDA are approximations to this full solution under certain
additional assumptions. Finally, experiments on the NIST 2010 SRE
show the promise of this new technique.
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