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ABSTRACT 

This paper presents an anti-model based speaker recognition 
system for NIST SRE 2012 evaluation, which is one of subsystems 
in IIR SRE12 submission.  We apply the anti-model approach for 
the SRE12 evaluation.  The KL-SVM-NAP based speaker 
recognition system is adopted to evaluate the performance. We 
present detailed comparison study of the classical KL-SVM-NAP 
based speaker recognition system and anti-model based KL-SVM-
NAP system for NIST 2012 speaker recognition evaluation.  The 
results are reported on in-house pre-SRE12 development set and 
NIST SRE12 core task. The clear advantages of the anti-model 
approach over that the traditional KL-SVM-NAP approach are 
presented and discussed.  

Index Terms: speaker recognition, anti-model, Nuisance 
Attribute Projection 

1. INTRODUCTION 

The 2012 Speaker Recognition Evaluation (SRE12) is one of an 
ongoing series of benchmarking events conducted by NIST [1].  
The basic recognition task specified in NIST SREs is speaker 
detection, i.e., to determine whether a specified target speaker is 
speaking during a given segment of speech. 

The most recent SRE12 [1] is distinguished from previous 
NIST evaluations [2] by allowing the use of information of all 
target speakers in each detection trial. This differs from previous 
SREs, where the system is restricted to use only the knowledge of 
the target speaker specified in the detection trial [2]. This 
essentially changes the definition of the alternative hypothesis in 
the detection task, in which the test segment given in a trial can 
now be assumed to come from other speakers in the target set as 
well as some unseen non-target speakers. (Note: the null 
hypothesis being that the test segment is from a specific target 
speaker). 

The definition of the alternative hypothesis as mentioned above 
has long been adopted in the Language Recognition Evaluations 
(LREs), also conducted by NIST [3]. For language detection task, 
where the target classed being the languages instead of speakers, 
the anti-model approach [4] has shown to be effective in separating 
near competitors. The results reported in [4, 5] demonstrated that 
the anti-model approach provides obvious advantages over 
conventional approach in language detection. 

Though definition of the compound form of alternative 
hypothesis is always a matter of debate, it is interesting to study the 
feasibility of applying the anti-model approach on speaker 
detection task, using a large-scale evaluation platform as provided 
in SRE12. In particular, we apply the anti-model approach on the 
KL-SVM-NAP system [6, 7], and study the benefit of the anti-

model-based KL-SVM-NAP compared to the classical KL-SVM-
NAP on SRE12 evaluation set. In addition to the anti-model 
approach, we also show that the compound hypothesis could be 
established by simple manipulating of SVM scores.  

The paper is organized as follows. In Section 2, we give an 
overview of the classical KL-SVM-NAP speaker recognition 
system. The anti-model KL-SVM-NAP system and the compound 
likelihood formulation are introduced in Section 3. In Section 4, 
the frontend feature processing for the SRE12 noisy data and the 
development of pre-SRE12 dataset are presented. The experimental 
results and analysis are reported also in Section 4.  Finally, we 
conclude the paper in Section 5. 

2. KL-SVM-NAP SPEAKER RECOGNITION 
SYSTEM 

The speaker recognition system in this study is based on the 
support vector machine (SVM) using the Kullback-Leibler (KL) 
divergence kernel and the nuisance attribute projection (NAP) 
technique for channel compensation, in short, the KL-SVM-NAP 
as reported in [6, 7]. The fundamental idea here is to represent 
variable-length utterances, for training or test, as high- dimensional 
vectors referred to as the GMM supervectors. Channel 
compensation and speaker detection are then performed in the 
high-dimensional vector space. The discriminative nature of the 
SVM classifier allows a straightforward implementation of the 
anti-model approach as detailed in the next section.    

Let { }, , ; 1, 2,i i i i MωΛ = =μ Σ   be the parameters of the 
universal background model (UBM), where M  is the number of 
mixture components, iω  are the mixture weights, im  are the 
mean vectors, and iΣ  are the covariance matrices assumed to be 
diagonal. The results generalize to the case of full-covariance 
matrices [8], which has shown to be useful for NIST detection 
tasks given rich amount of training data available in the order of 
hundreds hours. For a given utterance sX , the Baum-Welch 
statistics are used to adapt the mean vectors of the UBM using the 
maximum a posterior (MAP) criterion. The adapted mean vectors 
are concatenated to form a GMM supervector, as follows: 

 ( ) ( ) ( ) ( ) TT T T
1 2, , , Ms s s s ≡  m m m m ,  (1) 

where T denotes transposition. The mean vectors are then 
normalized by its standard deviation and weighted by the squared 
root of the mixture weights: 

 ( ) ( )1 2

, 1, 2, ,i i i is s i Mω
−′ = =m Σ m  . (2) 

The normalization in (2) allows the similarity between two GMM 
supervectors to be computed by taking their inner product in 
accordance to the KL-divergence [6, 7].   

7688978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Channel compensation is then applied on the normalized 
supervector via linear projection [6, 7]. Speaker recognition is then 
performed using the normalized and channel-compensated GMM 
supervectors with SVM. Typically, one SVM is trained for each 
target speaker using the one-versus-all strategy. Let kΩ  be the set 
of supervectors pertaining to the target speaker (i.e., the positive 
examples), and ℜ  the set of supervectors pertaining to some 
background speakers. An SVM solver for the dual formulation [6, 
7], 

 ( )SVMk kf ← Ω ℜ , (3) 

returns the Lagrange multipliers α  associated to all the 
supervectors in the training set and a bias parameter β , which 
essentially forms a linear model 

k
f  for a target speaker, as follows: 

 ( ) ( ) ( )
T

k
k i j

f i jα α β
Ω ℜ

 ′ ′ ′ ′= − +  m m m m . (4) 

Notice that, the same background set ℜ  is used for all target 
speakers enrolled to the system. In the next section, we show that 
significant improvement could be obtained by changing the 
selection of the training set { },kΩ ℜ . 

3. ANTI-MODEL APPROACH FOR SPEAKER 
RECOGNITION 

In the following, we describe two approaches to deal with the 
compound, or composite, form of alternative hypothesis for the 
detection task as introduced in the recent NIST SRE12. 

3.1. Anti-model KL-SVM-NAP System  

In a speaker detection task, system performance is evaluated by 
presenting the system with a set of trials, each consisting of a test 
segment and a hypothesized identity. The system has to decide, for 
each trial, to accept or reject the hypothesized identity. Let N be the 
number of target speakers enrolled in the recognition system. The 
identity assumed in the null hypothesis (i.e., the hypothesized 
identity) is constrained to be one of the N target speakers enrolled 
in the system. It is customary to assume an alternative hypothesis 
that a test segment belongs to an unseen non-target speaker. This 
allows the target speakers to be treated independently in evaluating 
the system performance.  

The definition of the alternative hypothesis as mentioned above 
has been a matter of debate. Different from previous SREs, one 
new challenge added to SRE12 is that it allows the use of the 
knowledge of all target speakers in each detection trial. This 
essentially changes the definition of the alternative hypothesis, in 
which the test segment given in a detection trial can now be 
assumed to come from other speakers in the target set in addition to 
the unseen non-target speakers. 

 As far as the SVM is concerned, these changes lead to the 
necessary modification on the negative training samples for a 
better modeling of the alternative hypothesis. To this end, the 
characteristic of the unseen non-target speakers can be learned 
from the background dataset ℜ . The effect of other (N – 1) 
competing speakers from the target set can be taken into account 
using the anti-model approach [4]. In essence, we augment the 
background training set ℜ  with the training data from other 
competing speakers. Following the same notation as above, the 
anti-model KL-SVM-NAP training is expressed as follows:  

 ( ), anti 1,
SVM

N

k k ll l k
f

= ≠
← Ω ℜ ∪ Ω . (5) 

for k = 1, 2, …, N. Having the training sets as defined above, a 
better discrimination between speakers in the target set and with 
other unseen speakers can be obtained, as we shall demonstrate in 
Section 4. 

3.2. Compound Likelihood  

For a given trial t, the output score of the SVM classifier as given 
in (4) can be interpreted as a log-likelihood ratio, scaled and shifted 
by the factors, a and b, respectively, as follows: 

 ( ) ( ) ( ) ( )log log exp a
k k kf t a s t b b s t  = + =    . (6) 

Here, ( )ks t  is the canonical likelihood ratio without the effect of 
scaling and shifting for the k-th target speaker 

 ( ) ( )
( )1

|

|
t k

k
t N

P H
s t

P H +

=
X

X
, for k = 1, 2, …, N, (7) 

where 1NH +  is the hypothesis that the test segment tX  is from 
some unseen speakers excluding other (N-1) speakers from the 
target set. Taking these competing speakers into the alternative 
hypothesis we form the following compound likelihood-ratio [9]: 

 ( ) ( )
( ) ( ) ( )Known

Known 1
1,

|

| 1 |
1

a
t k

k N
a a

t l t N
l l k

P H
s t

P
P H P P H

N +
= ≠

=
+ −

− 


X

X X
, (8) 

where KnownP  gives a proper weight between the two categories of 
known and unknown (or unseen) speakers. Using (6) and (7) in (8) 
we arrive at the following compound log-likelihood ratio:  

 ( ) ( ) ( ) ( )Known
Known

1,

log log exp 1
1

N

k k l
l l k

P
s t f t f t P

N = ≠

     = − + −    −  
 . (9) 

The above equation copes with the compound alternative 
hypothesis by manipulating the output scores of SVMs. 

4. SPEAKER RECOGNITION EXPERIMENTS 

The experiments were conducted on the NIST SRE12 and a 
development set designed for pre-SRE12 evaluation. In the 
following, we give a brief description on the front-end feature 
processing and the development set designed to evaluate system 
robustness against noisy test segments. We then focus on the 
analysis of the KL-SVM-NAP with and without the anti-model 
training.   

4.1. Frontend Feature Processing for Noisy Speech  

We use the MFCC feature in this study. In particular, a 16-
dimenison MFCC features were generated for each speech frame 
with a window of 30ms and a frame shift of 12.5ms. By including 
the 16-dimension first and second derivatives, the resulting MFCC 
feature vector consists of 48 elements.  

One new challenge added to NIST SRE12 is noisy test 
segments. These could be clean speech segments corrupted by 
crowd noise or HVAC-like noise (note: HVAC is shorthand for 
heating, ventilation, and air conditioning) [10]. There are also 
some test segments collected under noisy environment, from which 
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the Lombard effect could be observed. As shown in Fig. 1, the 
noisy speech is first processed with an ETSI based Wiener filter 
[11] prior to feature extraction. A second stage of noise reduction 
is then performed using spectral subtraction technique [12] to assist 
the voice activity detection (VAD) in selecting useful speech 
frames [13]. It is worth mentioning that the spectral subtracted 
signal is used for frame selection, while the MFCC features are 
directly derived from the Wiener filter. The MFCC feature vectors 
are then processed by RASTA filtering [14] and followed by mean-
and-variance normalization (MVN). Notice that, in Fig. 1, MVN is 
performed on the selected frames while RASTA filtering is 
perform on the whole sequence.  

 

Fig 1.  Frontend MFCC feature extraction. 

4.2.  Development, Train, and System Configuration 

We designed a pre-SRE12 development set using speech segments 
drawn from SRE06, SRE08 and SRE10. The development set 
consists of two disjoint partitions, DEV and EVAL, each 
consisting of a train and test sets. The number of train segments in 
EVAL-train is about twice the number of segments in DEV-train.  
Considering noisy segments in actual SRE12 [1], we added two 
type noises to DEV-test and EVAL-test signals by using the FaNT 
[15] tool. The noise types used are HVAC [16] and crowd noises 
[17]. Test segments are corrupted at 6-dB and 15-dB SNR level.  

SRE04 data was used to form the background dataset ℜ  and 
also for training the UBM (gender dependent and 1024 mixtures). 
Meanwhile, the NAP matrix was trained with data drawn from 
SRE04, SRE06, SRE08, SRE08-followup and SRE10, but it did 
not include neither utterances involving in Dev-test or Eval-test 
data, as well as Eval-train utterances. The rank of NAP was set to 
be 60 in the experiments. SVMTorch [18] was used to train SVM 
models. TZnorm was used for score normalization [19], where 
SRE05 data was used for training the cohort models for Tnorm 
while SRE04 data was used as imposture utterances for Znorm. 

4.3. Results and Analysis 
Experiments were conducted on the pre-SRE12 development sets 
and SRE12 core task to investigate the effectiveness of the anti-
model training approach and conversion of log-likelihood ratio 
based on the compound alternative hypothesis as in (8) and (9). 

4.3.1. Results on pre-SRE12 DEV and Eval sets 
The experimental results on DEV set under clean, 6-dB noisy, and 
15-dB noisy conditions are shown in Table 1. The clean and 6-dB 
tasks’ DET plots are also illustrated in Fig. 2.  

From Table 1, we can see that the anti-model approach has 
overall better performances in both EER and DCF when simple 
log-likelihood ratio (Simp) is used. There are 35% and 45% 
relative improvements on the EER and Minimum DCF, 
respectively, in average across clean, 6-dB-noisy and 15-dB-noisy 
conditions.  

When the compound log-likelihood ratio (Comp), as in (9), was 
applied to both scores, the EER and minimum DCF significantly 
reduce. After the compound log-likelihood conversion, the EER for 

both systems were almost identical.  However, the minimum DCF 
are still better for KL-SVM with anti-model training for all three 
conditions. There are about 15% to 20% relative improvements in 
terms of minimum DCF for all the three test conditions. The DET 
curves in Fig. 2 illustrate the obvious advantages of anti-model 
training (solid line) over the case conventional approach (dashed 
line) at two DCF points (shown in green dot and red dot). 

 

Table 1.  EER and minimum DCF on the pre-SRE12 DEV set 
for the KL-SVM system with and without anti-model training, 
and/or conversion to compound log-likelihood ratio. 

Score Type Test  
Cond. 

KL-SVM KL-SVM-anti
EER% DCF EER% DCF

 Clean 0.721 0.089 0.427 0.039 
Simp 15dB 1.366 0.139 0.849 0.069 

 6dB 3.348 0.261 2.508 0.175 

 Clean 0.296 0.032 0.312 0.026 
Comp 15dB 0.558 0.062 0.505 0.050 

 6dB 1.797 0.163 1.710 0.138 
 

 

 

Fig 2. Pre-SRE12 DEV set under clean and 6-db-noisy 
conditions for the KL-SVM system with and without anti-
model training, and/or conversion to compound log-likelihood 
ratio. 

Table 2.  EER and min DCF on the pre-SRE12 EVAL set. 

Score Type Test  
Cond. 

KL-SVM KL-SVM-anti
EER% DCF EER% DCF

 Clean 0.577 0.093 0.532 0.050 
Simp. 15dB 1.202 0.203 1.057 0.130 

 6dB 3.680 0.429 3.041 0.294 

 Clean 0.343 0.045 0.469 0.038 
Comp. 15dB 0.704 0.126 0.733 0.107 

 6dB 2.439 0.311 2.361 0.256 

 

Similar experiments were conducted on the pre-SRE12 EVAL 
set. The results are shown in Table 2. Similar results as in the DEV 
set are observed on the EVAL set. Anti-model training improves 
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the performance. Conversion to the compound log-likelihood ratio 
improves further the performance especially on the DCF points 
where the decision thresholds are relatively higher.  

4.3.2. Results on SRE12 Core Task 
The actual SRE12 core task results are shown in Table 3 and Fig. 3. 
In SRE12 core task [1], five common conditions (or subtasks) were 
defined based on the quality of the test segments, namely, clean-
interview, clean-telephone, interview with added noise, telephone 
with added noise, and telephone collected in noisy room. 

 

Table 3. The EER and minimum DCF for the five common 
conditions of the SRE12 core task. 

Score 
Type 

Test  
Cond.  

KL-SVM KL-SVM-anti
EER% DCF EER% DCF

 Int-clean 4.559 0.347   3.516 0.268  
 Tel-clean 2.469 0.2943   2.409 0.232  

Simp. Int-noise 4.276 0.283   3.622 0.188  

 Tel-noise 2.813 0.376   2.587 0.281  

 Tel-room-noise 3.117 0.339   2.926 0.262  

 Int-clean 3.964 0.278   3.357 0.253  
 Tel-clean 1.768 0.209   1.991 0.198  

Comp. Int-noise 4.173 0.247   3.458 0.187  

 Te.-noise 2.056 0.299   2.035 0.245  

 Tel-room-noise 2.190 0.238   2.388 0.219  
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Fig 3. Minimum DCF across five common conditions in 
SRE12 core task. 

 
For all the five subtasks, both EER and DCF improve 

significantly when anti-model training is applied. In particular, 
10% and 25% of relative improvement can be observed on the 
EER and minimum DCF, respectively. For the case of compound 
log-likelihood ratio, anti-model gives 13% relative improvement 
on DCF though no significant improvement on EER can be 
observed. These results are consistent with that observed on the 
pre-SRE12 DEV and EVAL sets. Fig. 3 illustrates clearly the 
advantage of anti-model training and compound log-likelihood 
conversion in terms of minimum DCF values. 

4.3.3. Results on SRE12 Core Task for Known and Unknown 
Non-target Trials 

Since anti-model training uses different background data in 
training each speaker model, it is important to check how the 
system performs on the “known” and “unknown” non-target trials 
in the SRE12 core task [1]. Briefly, imposter trials whereby the test 
segments not belong to any of the target speakers are referred to as 
the “unknown” non-target trials. We analyze the relative EER and 
DCF changes between known and unknown tasks in SRE12 core 
test.  Fig. 4 shows the results for the five subtasks (using 
compound log-likelihood).  From the figure, we can see that both 
EER and DCF exhibit similar trends across all five test conditions. 
This result indicates that anti-model training (solid line) works well 
for both “known” and “unknown” non-target trials. 

       
 

Fig 4. EER and DCF relative changes under five subtests in 
SRE12 core test for classical and KL-SVM-anti systems. 

 

5. CONCLUSIONS 

We presented an anti-model training approach to SVM based 
speaker recognition system. We also showed the effectiveness of 
compound log-likelihood ratio for the case when the training data 
from all target speakers can be used for each trials. Results on the 
pre-SRE12 and the actual SRE12 core test sets show the significant 
advantage of the anti-model training approach in both EER and 
DCF. For the case of compound log-likelihood ratio, anti-model 
training shows obvious benefit on DCF points (where the decision 
thresholds are relatively higher), though no significant 
improvement on EER can be observed. In addition, the anti-model 
approach also works well for “unknown” non-target trials. As 
future works, we will look into applying anti-model training for i-
vector based classifier. 
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