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ABSTRACT

Recently, joint factor analysis (JFA) and identity-vector (i-vector)
represent the dominant techniques used for speaker recognition due
to their superior performance. Developed relatively earlier, the
Gaussian mixture model - support vector machine (GMM-SVM)
with nuisance attribute projection (NAP) has gradually become less
popular. However, when developing the relevance factor in max-
imum a posteriori (MAP) estimation of GMM to be adapted by
application data in place of the conventional fixed value, it is noted
that GMM-SVM demonstrates some advantages. In this paper, we
conduct a comparative study between GMM-SVM with adaptive
relevance factor and JFA/i-vector under the framework of Speaker
Recognition Evaluation (SRE) formulated by the National Institute
of Standards and Technology (NIST).

Index Terms— maximum a posteriori, Gaussian mixture
model, support vector machine, joint factor analysis, i-vector, PLDA

1. INTRODUCTION

The GMM-UBM technique has shown reliable performance for text-
independent speaker recognition [1, 2, 3]. A GMM carries rich
amount of information from its corresponding utterance. Besides
the desired speaker information in the GMM, it also contains other
information such as channel and duration of test utterance. Such
distraction is considered as nuisance to the GMM and thus results in
mismatch between the training and testing conditions.

Over the past few years, the use of SVM for speaker model-
ing in the GMM-supervector space [4] has shown significant perfor-
mance improvement over the GMM-UBM baseline. The success of
the method was mainly due to the proper combination of the genera-
tive Gaussian model and discriminative support vector in a construc-
tive way. Furthermore, when the NAP [5] was introduced to deal
with the channel effect, the channel mismatch problem was com-
pensated to a large extent [6, 7, 8, 9]. Almost in the same period,
the JFA approach [10] has shown the state-of-the-art performance
in speaker recognition. It was reported to be effective due to its effi-
cient analysis on speaker factors [11] and channel factors [12], where
a GMM-supervector is viewed as a combination of different super-
vectors. JFA compensates the channel variation through eigenchan-
nel modeling and emphasizes the speaker-dependent component by
using low dimension speaker factor through eigenvoice modeling.

Presently, the i-vector technique that was originated from JFA
brings a new height to speaker recognition and becomes the most
popular [13, 14]. The i-vector extractor converts a sequence of fea-
tures into a single low-dimensional vector in the total variability
space, by which speech segment of variable length can be repre-
sented as fixed-length vector. In this regard, linear discriminant

analysis (LDA) [15], probabilistic LDA (PLDA) [16, 17], and the
heavy-tailed PLDA [18, 19] are useful for i-vector system.

With the JFA and i-vector become the de facto mainstream in
speaker recognition, GMM-SVM has been becoming less popular.
In our previous work [20, 21], we developed the adaptive relevance
factor with respect to the application data instead of some fixed em-
pirical value for GMM-SVM. As compared to conventional GMM-
SVM, the GMM-SVM with the adaptive relevance factor demon-
strates competitive properties. In this paper, we setup a database
platform and provide an investigation to compare GMM-SVM with
the adaptive relevance factor, JFA and i-vector under the same plat-
form. The series of the NIST SRE [22] has provided a benchmarking
platform for the research in text-independent speaker recognition for
more than a decade. In these evaluations, the speaker recognition
task has always prescribed trials where (i) genders are not mixed
and (ii) the genders of the speakers involved are given. Thus, in this
study, we use database from NIST SREs to evaluate the three popular
techniques, i.e., GMM-SVM, JFA and i-vector; and adopt gender-
dependent mode for all speaker recognition systems. We note that
the three techniques are all GMM based, therefore, in our experi-
ment, the three techniques share the same UBM for fair comparison.

In the remainder of the paper, the adaptive relevance factor of
MAP for GMM-SVM is introduced in Section 2. The JFA and i-
vector is briefly described in Section 3. The database assignment is
described and the performance measure is reported in section 4. The
conclusion is given in Section 5.

2. GMM-SVM WITH ADAPTIVE RELEVENCE FACTOR

An UBM can be denoted by the set of parameters, u = {ω̄i, m̄i, Σ̄i;
i = 1, 2, ..., C}, where C is the number of Gaussian components.
The adapted GMM, λ, takes a similar form λ = {ωi,mi,Σi; i =
1, 2, ..., C} where mi, Σi, ωi are respectively the mean vector, the
covariance matrix, and the weight of the ith Gaussian component.

2.1. Adaptive Relevance Factor in MAP

In conventional MAP, λ is obtained by

λ̆ = argmax
λ

[
f(X|λ)g(λ)

]
(1)

where X = [x1, x2, · · · , xκ] is the sequence of feature vectors,
which we call the adaptation data. x is a J-dimensional feature vec-
tor. f(X|λ) is the likelihood of X given a GMM λ. g(λ) is prior
density of the GMM λ.

Assuming that the weights that are required to be a conjugate
distribution are modeled as a Dirichlet density g1(ω1, ..., ωC) while
mean and covariance of GMM is a conjugate prior distribution with
normal-Wishart density g2(mi,Σi). g(λ) is the joint prior density
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of g1 and g2 . We have the mean and covariance parameters of the
ith Gaussian adapted as follows [23],

mi = αiΞ̌i + (1− αi)m̄i (2)

Ξ̌i is the first order sufficient statistics; αi are the adaptation coeffi-
cients given by

αi =
Ni

Ni + γi
(3)

The relevance factor γi is a constant parameter in the normal-Wishart
density as which the Gaussian parameters are modeled [23]; Ni is
the occupation count which is directly proportional to the duration
of the feature sequence.

Let m̄ be the UBM-supervector. We assume that a GMM-
supervector m(λ) is given by the sum of m̄ and a speaker-dependent
supervector Φz(λ):

m(λ) = m̄+Φz(λ) (4)

Φ denotes a diagonal transfer matrix and the vector z(λ) is speaker
(or language) specific. To this end, we assume that Gaussian
components in the GMM are functionally independent, and the
vector z(λ) is of a standard normal distribution. Given the ob-
served data X, maximizing the posterior probability P (z(λ)|X)
with respect to z gives z̆ = argmaxz P (z(λ)|X) = β, where
β = ζ−1(λ)Φ∗Σ−1N(Ξ̌ − m̄), N denotes the occupation count,
we arrive at

m̂ = m̄+Φz̆ = ᾰΞ̌ + m̄(1− ᾰ) (5)

where ᾰ = (Φ−2Σ + N)−1N . As compared to the conventional
MAP in (2), Eq. (5) shows that ᾰ is the adaptation coefficient. There-
fore, the relevance factor can be given by [10, 20, 21]

γ̆ = Φ−2Σ (6)

The relevance factor in (6) is data dependent since the parameter Φ
is estimated with expectation-maximization (EM) algorithm based
on a training dataset [21].

In discriminative classification using SVM, the supervector used
to represent a certain speaker is required to be relatively stable with-
out being affected by the duration variation.

In [20, 21], we introduce the adaptive relevance factor in which
we feed in additional term to (6) so that it could adapt to the duration
variation from one utterance to the other

γ̃ = θ0κΦ
−2Σ (7)

where κ denotes the duration of the utterance, and θ0 is a constant
which is determined empirically based on a given database.

Different from conventional GMM-SVM which uses a fixed rel-
evance factor, the GMM-SVM with adaptive relevance factor applies
(7) to each GMM-supervector. As we only obtain the parameter Φ
once during training, the computation at run-time recognition pro-
cess only involves an additional multiplication.

2.2. SVM

The discriminant score of the SVM is given by [7, 8, 24]

f(X) =

L∑
l=1

αlylK(Xl,X) + b (8)

where L is the number of support vectors, and Xl is the lth support
vector, αl is the weight assigned to the lth support vector with its

label given by yl ∈ {−1,+1} and b is the bias parameter. K is the
SVM kernel used to measure the similarity of the support vector and
given vector. In this study, we use the Bhattacharyya-based kernel
referred to as the GMM-UBM Mean Interval (GUMI) in [6, 7] as
the SVM kernel.

3. JFA AND I-VECTOR

The JFA has been reported to have superior performance due to its
robustness in channel compensation. Recently, Dehak et al. [13]
proposed a feature extractor inspired by the JFA. Unlike JFA which
models separately speaker and channel variability in a high dimen-
sion space of supervectors, Dehak’s idea consists in finding a low di-
mensional subspace of the GMM-supervector space, named the total
variability space that represents both speaker and channel variability.
The vectors in the low-dimensional space are called i-vectors.

3.1. JFA

In JFA, the speaker variability is modeled by the eigenvoice, where
several common factors are used to represent the spanned space of
the speaker, while the channel variability is modeled using a set of
latent variables channel factors. In particular, a speaker-dependent
GMM-supervector s can be decomposed in joint factors as follows
[10]

m = m̄+ V v + Uu+Dd (9)

where m̄ is a speaker-independent supervector from UBM, V is the
eigenvoice matrix, v is the eigenvoice factors (or speaker factors)
with normal prior distribution; U is the eigenchannel matrix, and u
the channel factors with normal prior distribution; D is the residual
diagonal matrix, and d denotes the speaker-specific residual factors
with normal prior distribution.

As a result of the decomposition in (9), speaker adaptation can
be performed by updating a set of speaker-dependent latent variables
and minimizing the influence of channel effects in an utterance. In
particular implementation, we train the eigenvoice matrix V by as-
suming U and D to be zeros; then train the eigenchannel matrix
U given the estimate of V by assuming D to be zero; finally D
matrix is trained given the estimates of V and U . In the training
database design, for V matrix, we focused on obtaining the speaker-
based principal dimensions; for the U matrix, the key is to obtain the
channel (or nuisance) based principle dimensions. With the trained
matrices V , U and D , the estimate of v, u and d are obtained based
on the posterior means given the particular utterance.

The score can be obtained by comparing the target speaker
speech side and test segment statistics as follows

Score =

(V vtar +Ddtar)
TΣ−1(Ξtest −Ntestm̄−NtestUutest)

(10)

where vtar and dtar are the target speaker factors and residual fac-
tors; while Ξtest, Ntest, and utest are the first order sufficient statis-
tics, zero-order statistics (or occupation count), and the channel fac-
tors of the test speech utterance(s). We can see that the target speaker
side is centered around speaker and residual factors, while the test
speech has speaker-independent and channel factors removed. In
score normalization, the z-norm and t-norm is used since they have
been proven to effectively reduce the variability of the likelihood
ratio scores that are used in the decision criterion.
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3.2. i-Vector

Comparing to the supervector used in GMM-SVM and JFA, the i-
vectors are smaller in size to reduce the execution time of the recog-
nition task while maintaining recognition performance similar to that
obtained with JFA. A key ingredient to the success of this approach
was the enormous quantity of data used to extract the i-vector feature
set. In other words, the i-vector is a low-dimensional representation
of an entire speech segment. It has been shown to respond well to
generative modeling. Actually, the i-vector estimate is calculated by
evaluating the posterior expectation of the hidden variables in the
model conditioned on the Baum-Welch statistics extracted from the
utterance. This posterior calculation provides a posterior covariance
matrix as well as a posterior expectation. The posterior covariance
matrix can be interpreted as quantifying the reliability of the point
estimate. An i-vector system uses a set of low-dimensional total vari-
ability factors w to represent each utterance. Each factor controls an
eigen-dimension of the total variability matrix T . The total variabil-
ity factors w is the i-vector. In particular, the GMM-supervector m
can be decomposed into speaker-independent supervector m̄ and the
speaker-dependent supervector Tw

m = m̄+ Tw (11)

To train T , just using the same procedure used for training V in
JFA but treat all utterance of all training speakers as belonging to
different speakers. Thus T actually absorbs the information of V ,
U and D in JFA. For each utterance, the i-vector w can be obtained
given T .

In fact, i-vector extractors are trained without speaker-level la-
beling. It indicates that further transformations should apply in order
to increase their speaker discriminative capacity. In i-vector system,
a score can be obtained by comparing the enrollment i-vector and
the test i-vector. It was shown that by projecting i-vectors onto a
Linear Discriminative Analysis (LDA) basis, trained using represen-
tative enrollment data and speaker-labels to defined classes, the per-
formance can be improved significantly. More effective performance
can be obtained by giving the score with PLDA where the i-vector is
considered as the second layer input vector to PLDA system [16].

There are two versions of PLDA named Gaussian and heavy-
tailed versions. Currently, Gaussian PLDA [16, 17] and heavy-tailed
PLDA [18], performed either on i-vectors directly or on the LDA-
projected length-normalized i-vectors, yield state-of-the-art speaker
recognition results. i-vectors can be approximately Gaussianized
by length normalization so that the performance of Gaussian PLDA
with length normalization is similar to that of heavy-tailed PLDA
without length normalization. The recent research results show that
unity length normalization of the i-vector indicates that Gaussian
PLDA is as effective as heavy-tailed PLDA. In this investigation,
we chose Gaussian PLDA for the speaker recognition.

In particular, given a speaker and a collection of i-vectors
w1j, ...,wRj (one for each recording of the speaker in jth style
(or channel or session)), standard Gaussian PLDA assumes that the
i-vectors are distributed according to

wrj = ϖ +Ωhr + Λqrj + ϵ (12)

incorporating speaker subspace Ω and channel subspace Λ. ϖ is
the overall mean of the i-vectors. h and q are hidden variables rep-
resenting the speaker factors and channel factors respectively; and
they have standard normal priors. The residual ϵr is normally dis-
tributed with zero mean and diagonal covariance matrix. The PLDA
is modeled by the parameters ϖ,Ω,Λ, and ϵr , which can be esti-
mated through EM algorithm using the parameter training database.

Table 1. The training dataset list for GMM-SVM for SRE08 task
ITEM Data Resource #utts:f #utts:m
UBM S04(t)1 + S06(t)1 5651 4116
Φ-matrix S04(t)2+S05(m)2+S06(t)2 7035 6786

+S06(m)2+S08(i)2
NAP S04(t)3+S05(t)3+S05(m)3 6801 6035

+ S08(i)2
SVM-i S04(t)4 2532 2359
T-Norm S05(t)5+S05(m)5 561 502
Z-Norm S06(t)6+S06(m)6 361 245

To make inference of the identity of a given test segment, the poste-
rior probability for both enrollment i-vector and test i-vector gener-
ated from the same speaker or from different speaker are computed
based on PLDA model. So, the log-likelihood ratio for the same and
different inference likelihood is obtained as the output of the PLDA
system. It has been proven that ignoring the channel subspace Λ and
using full covariance matrix of ϵr instead of the diagonal matrix can
be effective for speaker recognition system. Therefore the PLDA
system in the investigation adopts this way. Finally, the S-norm is
applied for score normalization [18].

4. PERFORMANCE EVALUATION

In this investigation, the GMM-SVM system is implemented by us-
ing the GUMI kernel; and we use 512 mixture components with
gender-dependent mode. For the channel compensation, the NAP
is used and its rank is set to 60 for the GMM-supervector with 52 di-
mension of MFCC. We trained a diagonal matrix Φ by using EM al-
gorithm with Φ

(0)
i = (Σ̄i)

− 1
2 as the initial matrix. The default value

of θ0 is empirically set to 8.2×10−4. It is done by using a reference
value that is obtained by setting the fixed relevance factor to 1. Ac-
cording to (7), by taking the average over all Gaussian components,
we have a default value of θ0 to be θ0 ≈ κ−1

0
1
C

∑C
i=1(Φ

2
iΣ

−1
i ),

with κ0 =
∑T0

t=1 κt where κt is from a set of T0 utterances repre-
senting the utterances in the application, therefore, κ0 represents the
average length of the feature data.

To build the experimental systems with a common platform,
we designed the training database list for UBM, Φ-matrix, SVM
background and T/Z-norm in Table 1. In the table, S0x(H)n indi-
cates a group of the database, where x ∈ {4,6,8} denotes NIST year
2004, 2006, 2008, H∈{‘t’, ‘m’, ‘i’} represents the channel1, and
n∈{1,2,...,6} indicates the speech data group index. With same x
and H, the group with different n may have the database totally or
partially disjointed. The GMM-SVM system with the fixed rele-
vance factor is denoted as conv-GS (which represents the conven-
tional GMM-SVM), the GMM-SVM with the adaptive relevance
factor of (7) named as adpt-GS. The performance is measured in
terms of equal error rate (EER) and minimum detection cost func-
tion (minDCF).

We setup JFA and i-vector systems with the same feature and
database as GMM-SVM. For JFA system, the joint factors are com-
posed by 300 speaker factors, 200 channel factors2, and full rank
diagonal matrix. The details of the training database list for JFA is

1‘t’ denotes the telephone channel; ‘m’ means the microphone channel;
and ‘i’ denotes the interview channel.

2The 200 channel factors include 100 factors for telephone channel, 50
for microphone channel and the remainder 50 for interview channel.
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Table 2. The training dataset list for JFA for SRE08 task
ITEM Data Resource #utts:f #utts:m
UBM S04(t)1+S06(t)1 5651 4116
EV S05(t)3+S06(t)2 2575 2208
EC:tel S04(t)2+S05(t)3+S06(t)2 4142 3747
EC:mic S05(m)3+S06(m)2 2355 2066
EC:itv S08(i)2 2095 2070
D S04(t)4 2532 2359
T-Norm S05(t)5+S05(m)5 561 502
Z-Norm S06(t)6+S06(m)6 361 245

Table 3. The training dataset list for the i-vector for SRE08 task.
Note: ‘TV’ in the table means total variability.

ITEM Data Resource #utts:f #utts:m
iVP-I:UBM S04(t)1+S06(t)1 5651 4116
iVP-I:TV S04(t)4 2532 2359
iVP-I:PLDA S04(t)2+S05(m)2+S06(t)2 7035 6786

+S06(m)2+S08(i)2
iVP-I:S-Norm S06(t)6; S06(m)6 361 245

iVP-II:UBM S04(t)1+S06(t)1 5651 4116
iVP-II:TV S04(t)4+S05(m)3+S06(m)2 4887 4425
iVP-II:PLDA S04(t)2+S05(m)2+S06(t)2 7035 6786

+S06(m)2+S08(i)2
iVP-II:S-Norm S05(t)5+S06(t)6;

S05(m)5+S06(m)6
922 747

shown in Table 2. For i-vector system, the total variability is trained
with 10 iterations. For the i-vector extractor matrix, 400 total vari-
ability factors are used; for PLDA training, 200 speaker factors are
used for each gender. In the experiment, two sets of data assign-
ments in Table 3 were investigated. We denote the i-vector-PLDA
for set-I as iVP-I and set-II as iVP-II. Both JFA and iVP systems are
gender-dependent and share the same UBM as the GMM-SVM.

Table 4 shows the EER and minDCF of the two GMM-SVM sys-
tems as compared to the JFA, iVP-I and iVP-II in SRE 2008 short2-
10sec evaluation 3 [25]. It can be seen that the iVP-II gives the best
EER performance, while it has very close minDCF value with adpt-
GS which is little bit lower than iVP-II.

3The short2-10sec evaluation means that the channel style of the training
data is telephone with total duration of five minutes or interview with total
duration of three minutes while the test data is captured through telephone
channel with approximate 10 seconds of speech signal.

Table 4. The comparison of GMM-SVM with various relevance
factors, JFA and i-Vector on SRE 2008 short2-10sec evaluation

close-set EER minDCF×100

conv-GS 8.28 % 3.46
adpt-GS 7.15 % 3.24
JFA 7.62 % 3.87
iVP-I 7.54 % 3.67
iVP-II 5.74 % 3.26

Table 5. The comparison of GMM-SVM with various relevance factors,
JFA and i-Vector on SRE 2008 short2-short3 evaluation.

EER (%) itv-itv itv-tel tel-tel tel-mic tel-itv
conv-GS 4.07 8.08 2.35 7.81 5.28
adpt-GS 3.97 6.59 2.09 6.72 3.93
JFA 3.15 5.71 2.30 8.19 3.87
iVP-I 2.73 6.32 2.45 7.38 4.89
iVP-II 2.54 7.96 2.27 8.29 6.19

minDCF (×100) itv-itv itv-tel tel-tel tel-mic tel-itv
conv-GS 1.96 2.73 1.18 2.42 2.17
adpt-GS 1.61 2.72 1.12 2.15 1.70
JFA 1.92 2.52 0.90 2.90 1.89
iVP-I 1.41 3.13 1.24 2.94 2.64
iVP-II 1.46 3.70 1.22 3.27 2.88

The equal error rate (EER) and minDCF listed in Table 5 are
for NIST SRE 2008 short2-short3 task. There are five conditions
in this task, i.e., ‘itv-itv’, ‘itv-tel’, ‘tel-tel’, ‘tel-mic’ and ‘tel-itv’.
The first channel of each condition denotes the type of the channel
from which the enrollment speech data were generated while the sec-
ond channel means the type of channel from which the test segment
was provided. adpt-GS is always better than conv-GS in terms of
EER and minDCF. It also can be seen that the iVP has quite good
performance in ‘itv-itv’ channel pair, while JFA performs the best
for ‘itv-tel’ condition in terms of EER and minDCF. adpt-GS gives
the best performance for both ‘tel-tel’ and ‘tel-mic’ conditions. For
‘tel-itv’ condition, JFA shows the best in terms of EER while adpt-
GS gives the best in terms of minDCF. Generally, the conventional
GMM-SVM is not competitive with JFA and i-vector, while adpt-
GS shows its strong competitiveness.

5. SUMMARY

In this paper, we develop the JFA, i-vector and GMM-SVM using
the NIST-SRE series database. The database used for UBM, nor-
malization and most of similar function are kept as close as possible.
Therefore, we can compare fairly the three main techniques here.

We investigate their performances in speaker recognition task
in terms of EER and minDCF. The result shows that the conven-
tional GMM-SVM is less effective compared to JFA and i-vector.
However, the GMM-SVM with adaptive relevance factor shows to
be competitive. In the NIST SRE platform, it has been observed
that the state-of-the-art techniques: i-vector, JFA and GMM-SVM
with adaptive relevance factor shows their competitive advantages
in different training-test condition. Relatively, GMM-SVM has low
computational complexity and memory requirement.

Recently, we used the above mentioned adpt-GS and the JFA
algorithms to contribute two sub-systems for the NIST SRE 2012
evaluation, and also the two sub-systems shared the same UBM and
feature databases. Their performances in SRE 2012 evaluation are
effective in terms of minimum DCF and actual DCF, and the adpt-
GS sub-system performs better than the JFA sub-system in most of
the SRE 2012 conditions. Generally, the actual cost of the adpt-GS
gives very competitive performance among all our five sub-systems.
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