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ABSTRACT
Probabilistic Linear Discriminant Analysis (PLDA), used par-
ticularly in image and speech processing for face and speaker
recognition, respectively, is a generative model requesting
lots of data to be trained. In the paper several enhancements
concerning the implementation of the estimation algorithm
of PLDA are proposed providing substantial computational
savings. At first, an inverse of a huge matrix is replaced by an
inversion of two significantly smaller matrices. Subsequently,
it is shown how to avoid the need to process the whole data set
in each iteration of the estimation algorithm. Supplementary
results are presented on NIST SRE 2008.

Index Terms— PLDA, implementation, latent variables,
generative model

1. INTRODUCTION

Probabilistic Linear Discriminant Analysis (PLDA) was pro-
posed by Prince and Elder [1] for the task of face recognition.
It is a statistical model used to decompose the feature space
to a person/individual’s specific invariable part and a channel
part describing the variation in distinct realizations of an indi-
vidual. PLDA can be also seen as a special case of Joint Fac-
tor Analysis (JFA) [2], which is working with Gaussian Mix-
ture Model (GMM) based supervectors, and was developed
independently of PLDA by Patrick Kenny. JFA and closely
related concept of i-vectors [3] form today the core of most of
the state-of-the-art Speaker Recognition (SR) systems [4, 5].
PLDA is often used in the verification phase of a SR system
either directly with supervectors [6, 7] or it is utilized to build
a generative model in the i-vectors space [8, 9] decomposing
the space to two subspaces responsible for speaker and chan-
nel variabilities, respectively.

Since the estimation of PLDA parameters requests several
iterations until the convergence is reached, and a large devel-
opment data set is needed to train a reliable PLDA model,
implementation enhancements are of significant importance
to ensure robustness, speed and proper data/memory manage-
ment. In the beginning of the following section the concept
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and existing implementation of the PLDA estimation algo-
rithm are described. In Section 2.2 and Section 2.3 novel im-
plementation enhancements are proposed. At the end, some
supplementary experiments are provided in Section 3.

2. PROBABILISTIC LDA

PLDA [1] is a generative statistical model of the form

xij = µ+ Fhi +Gwij + εij (1)

where X = {xi1, . . . ,xiJi
}Ii=1 is the set of I individuals

represented as Dx dimensional observable vectors xij , Ji is
the count of distinct representations/observations of each in-
dividual, N =

∑I
i=1 Ji is the number of vectors in X , and

µ = E[xij ] is the mean value of vectors in X . Let denote
Λi = {xij}Ji

j=1 the set of distinct representations of one indi-
vidual. Columns of the matrix F span the between individual
subspace, hi is a Dh dimensional latent vector of coordinates
in this space and represents the mutual information shared be-
tween vectors in Λi. Columns of the matrixG span the within
individual subspace of the space formed by vectors inX , and
wij is a Dw dimensional vector of coordinates in this space.
It is assumed that bothhi andwij follow standard normal dis-
tribution N (0, I). The term εij represents the residual noise
factor having normal distribution N (0,Σ) with diagonal co-
variance matrix Σ. Thus, one can identify the identity com-
ponentµ+Fhi and the noise/channel componentGwij+εij
of each vector xij . Note that the distribution of xij is normal
N (µ,FF T +GGT + Σ).

2.1. Training

In the training phase the parameters θ = {µ,F ,G,Σ} have
to be trained. Mean µ is estimated as the mean of all vectors
xij from the development set X , and to facilitate subsequent
formulas let subtract µ from all xij beforehand. In [1] a sys-
tem of equations is formed xi1

...
xiJi

 =

F G . . . 0
...

...
. . .

...
F 0 . . . G



hi

wi1

...
wiJi

+


ε1

ε2

...
εJi

 ,
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Σ̂i =

Σ . . . 0
...

. . .
...

0 . . . Σ

 , (2)

what can be written in a compact form as

x̂i = Aiŷi + ε̂, (3)

where the distribution of ε̂ follows N (0, Σ̂i). Matrices
Ai, Σ̂i depend on i through the number of their row- and
column-blocks, which are given by the number of vectors in
Λi. Note that the joint probability of vectors in Λi given θ
equals to

p(Λi|θ) = N (x̂i|0,AiA
T
i + Σ̂i). (4)

This formulation is equivalent to the formulation of Factor
Analysis (FA) [10] and can be solved by the same esti-
mation procedure based on maximization of (4). At first
hi,wi1, . . . ,wiJi are extracted (in fact only their MAP esti-
mates are obtained) utilizing matricesAi, Σ̂i, hence

ŷi =
(
AT

i Σ̂
−1
i Ai + I

)−1

AT
i Σ̂
−1
i x̂i, (5)

and then ŷi is decomposed to zij = [hT
i ,w

T
ij ]

T, j = 1, . . . , Ji.
Finally, couples (xij , zij) are used to train B = [F ,G] and
Σ. Update formulas are

Z =
(
BTΣ−1B + I

)−1
, (6)

B∗ =

∑
i,j

xijz
T
ij

∑
i,j

Z + zijz
T
ij

−1

, (7)

Σ =
1

N

∑
ij

diag
(
xijx

T
ij −B∗zijxT

ij

)
, (8)

where B∗ is the new estimate of B, and the function diag()
zeros the non-diagonal elements. The estimation is iterative,
steps (5)-(8) have to be repeated until the convergence of (4)
is reached.

2.2. Training revisited I

The problem associated with the training procedure described
in the previous section is that the matrixAT

i Σ̂
−1
i Ai+I has to

be reassembled and inverted whenever the number of vectors
in Λi changes in order to evaluate (5). If vectors xij are of
significantly high dimension and/or the number Ji of repre-
sentations of an individual is high, the inversion of the matrix
AT

i Σ
−1
i Ai+I can become intractable and/or ill-conditioned.

Even if a reliable inversion can be computed, the memory
management will become expensive. Now we will show how
to invertAT

i Σ
−1
i Ai+I and adjust (5) leading to a much faster

and easier implementation. We have to find a decomposition

(
AT

i Σ
−1
i Ai + I

)−1
=

[
Ω1 Ω3

ΩT
3 Ω2

]−1

=

[
Ω̃1 Ω̃3

Ω̃T
3 Ω̃2

]
.

Choosing

Ω1 = JiF
TΣ−1F + I, Dh ×Dh,

Ω2 =

K . . . 0
...

. . .
...

0 . . . K

 , JiDw × JiDw, (9)

Ω3 =
[
F TΣ−1G . . . F TΣ−1G

]
, Dh × JiDw,

whereK = GTΣ−1G+ I , and using the formulas for block
inverses

Ω̃1 = (Ω1 −Ω3Ω
−1
2 ΩT

3)−1,

Ω̃3 = −Ω̃1Ω3Ω
−1
2 ,

Ω̃2 = Ω−1
2 + Ω−1

2 ΩT
3Ω̃1Ω3Ω

−1
2 ,

(10)

we can note that the sizes of corresponding blocks (e.g. sizes
of Ω̃1 and Ω1) remain the same. Since blocks in Ω3 and Ω2

repeat we can state that Ω̃3 will contain Ji identical block-
matrices Ω̃3S each of size Dh × Dw, and since ΩT

3Ω̃1Ω3 is
full and contains identical Dw ×Dw blocks and Ω2 is block-
diagonal, Ω̃2 will contain two kind of block-matrices: Ω̃2D
will be repeated on the diagonal, and Ω̃2S will fill the non-
diagonal blocks (for more details see [11]). For example, for
Ji = 3 we get

ŷi = (AT
i Σ̂
−1
i AT

i + I)−1AT
i Σ̂
−1
i x̂i =

=


Ω̃1 Ω̃3S Ω̃3S Ω̃3S

Ω̃T
3S Ω̃2D Ω̃2S Ω̃2S

Ω̃T
3S Ω̃2S Ω̃2D Ω̃2S

Ω̃T
3S Ω̃2S Ω̃2S Ω̃2D



F TΣ−1

∑3
j=1 xij

GTΣ−1xi1

GTΣ−1xi2

GTΣ−1xi3

 .
(11)

Assigning ΣN = Σ + GGT and µi = 1/Ji
∑Ji

j=1 xij , and
utilizing the Sherman-Morrison-Woodbury (SMW) matrix in-
verse identity following formulas can be derived:

Ω̃1 = 1/Ji (F TΣ−1
N F + 1/Ji I)−1,

Ω̃2S = GTΣ−1
N F Ω̃1F

TΣ−1
N G,

Ω̃2D = Ω̃2S +K−1,

Ω̃3S = −Ω̃1F
TΣ−1

N G. (12)

Combining these results with (11) and using again the SMW
identities we get formulas for MAP estimates of hi and wij

hi = Ω̃1F
TΣ−1

Ji∑
j=1

xij + Ω̃3SG
TΣ−1

Ji∑
j=1

xij

=
(
F TΣ−1

N F + 1/Ji I
)−1

F TΣ−1
N µi, (13)

wij = Ω̃T
3SF

TΣ−1
Ji∑
j=1

xij + Ω̃2DG
TΣ−1xij+

+ Ω̃2SG
TΣ−1

∑
Ji

k=1,k 6=jxik =

=
(
GTΣ−1G+ I

)−1
GTΣ−1 (xij − Fhi) . (14)
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For detailed derivations of previous formulas see [12].
The latent variable hi, which represents the mutual infor-

mation, is the projected mean of all the given representations
of an individual i assuming full noise covariance ΣN. In ad-
dition, the more representations are given the lesser the influ-
ence of the hi’s prior N (0, I) – the term 1/JiI in (13). The
representation dependent latent variable wij is the projection
of the residual (xij−Fhi) on the space formed by columns of
G assuming only the unexplained variance Σ, however since
only one vector is used at a time the prior is fixed. It is also
obvious that hi depends not only on one particular xij ∈ Λi,
but on the whole set Λi, whereas wij depends on xij ∈ Λi

and even on hi.
The size of the matrices to be inverted is now Dh × Dh

and Dw × Dw instead of one huge matrix (Dh + JiDw) ×
(Dh + JiDw). In cases where the number of representations
in Λi is high the term 1/JiI in (13) can be left out, or fixed
to an arbitrary small number to handle ill-conditioned situa-
tions. Otherwise,

(
F TΣ−1

N F + 1/JiI
)−1

F TΣ−1
N has to be

still recomputed for each distinct value of Ji. If ρ = 1/Ji is
fixed, one can compute the transformation matrices

TF =
(
F TΣ−1

N F + ρI
)−1

F TΣ−1
N , (15)

TG =
(
GTΣ−1G+ I

)−1
GTΣ−1 (16)

(for some small ρ) before each iteration, and iterate through
all the data in X without the need to reestimate/invert any of
the matrices when the amount of data in any of the sets Λi

changes. Hence, the difference from the training procedure
described in Section 2.1 stands in the use of TF and TG in-
stead of using (5) when estimating zij = [hT

i ,w
T
ij ]

T, steps
(6)-(8) remain the same.

2.3. Training revisited II

The goal of the previous section was to facilitate evaluations
of latent variables hi and wij , now we will focus on the ac-
cumulation process in the PLDA training, more precisely on
summation terms (note that zij = [hT

i ,w
T
ij ]

T)

∑
i,j

xij

[
hT
i ,w

T
ij

]
,
∑
i,j

[
hi

wij

] [
hT
i ,w

T
ij

]
(17)

from (7) and (8). We will show how to make the iteration
process in the PLDA training independent of the size of the
input feature vector set. Let

CX = 1/N
∑

i,j xijx
T
ij , (18)

CB = 1/N
∑

i Jiµiµ
T
i (19)

be the data and the between covariance matrices, respec-
tively (assuming the data have been normalized to zero
mean beforehand). Let substitute for hi = TFµi and for
wij = TG(xij − Fhi) in (17) and decompose yielding

Exh =
∑
ij

xijh
T
i = NCBT

T
F , (20)

Exw =
∑
ij

xijw
T
ij = NΣ/FT

T
G, (21)

Ehh =
∑
ij

hih
T
i = TFExh, (22)

Ewh =
∑
ij

wijh
T
i = TG(Exh − FEhh), (23)

Eww =
∑
ij

wijw
T
ij = TG(Exw − FEhw), (24)

where Σ/F = CX − 1
N (FET

xh)T is the residual covariance
not captured by FF T. Now the update formula (7) is the
solution of the system of equations(

NZ +

[
Ehh ET

wh

Ewh Eww

])[
F T

GT

]
=

[
ET

xh

ET
xw

]
, (25)

solved forF andG (a system of equation is solved rather than
to compute the inverse of a matrix), andZ was defined in (6).
Let F ∗ and G∗ be the solutions of (25). Using the already
accumulated Exh and Exw update formula (8) changes to

Σ = diag
(
CX −

1

N
F ∗ET

xh −
1

N
G∗ET

xw

)
. (26)

Now the time to train PLDA does not depend on the size of the
dataset. Once the matrices CX and CB have been estimated,
the data set is no longer needed. Since the estimation pro-
cess is iterative (data had to be seen/processed several times)
significant computational savings may be acquired for large
datasets.

In this section we have assumed an approximation that
ρ = 1/Ji is fixed. In the exact case the matrix TF has
to be computed for each distinct Ji. Notice that this will
affect only Exh and Ehh. Several covariances CB(Ji) =
Ji
∑

j∈Φi
µjµ

T
j will have to be stored in the memory (Φi is

the set of indexes of those individuals i who contain the same
number of representations Ji), and several TF (Ji) will have
to be computed. However, if the number of distinct Jis is
small, the increase in the computational cost is negligible.
Otherwise, it is useful to fix Ji to some small value, or e.g.
cluster Jis into a few clusters and fix one Ji for each cluster.

2.4. Training summary

The covariance matrices CX and CB are estimated, and the
number of iterations is set by the user. In each iteration ma-
trices (15) and (16) are computed and matrices (20)-(24) are
evaluated. New estimates ofF ,G and Σ are acquired accord-
ing to (25) and (26), respectively. Now, these new estimates
are used to repeat the process until specified number of iter-
ations is reached. The latent variables may be then obtained
through (13), (14).
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2.5. Verification

In the verification phase two hypotheses are tested [1],
namely: hypotheses Hs that two vectors x1 and x2 share
the same identity, and hypotheses Hd that the identity of two
vectors x1 and x2 differs. The Log-Likelihood Ratio (LLR)
can be written as

LLR(x1,x2) = log
p(x1,x2|Hs)

p(x1|Hd)p(x2|Hd)
=

= logN
([

x1

x2

]
;

[
µ
µ

]
,

[
ĈX CF

CF ĈX

])
−

− logN
([

x1

x2

]
;

[
µ
µ

]
,

[
ĈX 0

0 ĈX

])
,

where ĈX = FF T +GGT + Σ and CF = FF T, for more
details see [13]. Note that in this verification scenario we do
not care about the decomposition of x1 or x2, the question
is whether two vectors share the same identity given the sub-
spaces generated by F andG.

3. EXPERIMENTS

To evaluate the time consumption of the algorithm and
demonstrate the impact of fixing the weight ρ of the prior in
TF a Speaker Recognition (SR) system based on i-vectors [3]
was used, and PLDA model was estimated in the i-vector
space [8]. Development set consisted of corpora NIST SRE
2004, 2005, 2006, Switchboard 1 Release 2 and Switchboard
2 Phase 3, only male speakers who had more than 4 recorded
sessions were utilized. Maximum number of sessions was 32,
number of distinct Ji was 26 and the median was Jmed

i = 8.
Overall 8312 recordings of 892 males were used, each of the
recordings had approximately 5 minutes in duration including
the silence (approx. 700 hours of speech). All the data were
used to train both an Universal Background Model (UBM)
containing 1024 Gaussians and an i-vector extractor. The
dimension of i-vectors was set to Dx = 400, the dimension
of the speaker identity space in the PLDA model was set to
Dh = 300, and the dimension of the session/channel space
was set to Dw = 100, 50 iterations were carried out to get
estimates of PLDA parameters. Note that for each of the 8312
recordings one i-vector was extracted and PLDA model was
trained from all of them.

The feature extraction was based on Linear Frequency
Cepstral Coefficients (LFCCs), Hamming window of length
25 ms was used and shifted each 10 ms, 20 LFCCs were ex-
tracted, ∆-coefficients were added leading to 40 dimensional
feature vectors. Voice activity detection was carried out to
discard the non-speech frames, and at the end feature warping
was applied utilizing a sliding window of length 3 seconds.

Time durations needed to process 10 iterations of the
PLDA estimation algorithm on the development set are given
in Table 1. Algorithms were implemented in MATLAB R©

Table 1. Time durations in seconds needed to process 10 it-
erations on the development set.

algorithm naive TF,G exact ρ fixed
t [s] 4820.23 46.48 12.82 1.92

Table 2. Results obtained on NIST SRE 2008.
ρ exact 1/2 1/4 1/8 1/16

EER [%] 7.69 7.84 7.43 7.58 8.05

R2011b (7.13.0.564), computer with Intel Core2 Quad CPU
2.83GHz and 8GB RAM was used, and only one thread was
run. The naive algorithm follows the implementation from [1]
described in Section 2.1 utilizing some optimizations when
constructing newAT

i Σ
−1
i Ai +I from the previous one (used

for lower number of observations Ji). Note that for each
distinct Ji the matrix AT

i Σ
−1
i Ai + I was inverted in each

iteration only once and stored for the future use. Method
denoted TF,G uses only the enhancement described in Sec-
tion 2.2 with ρ = 1/Ji fixed, and methods denoted “exact” (ρ
recomputed for each distinct Ji) and “ρ fixed” use in addition
also enhancements from Section 2.3.

In the naive algorithm in each iteration 26 assembles and
inversions of matrices of sizes ranging from (300+4∗100)×
(300+4∗100) = 700×700 to (300+32∗100)×(300+32∗
100) = 3500×3500 had to be done (for details see the discus-
sion preceding (15), (16)), whereas in the case of TF,G in each
iteration only one inversion of a 300× 300 matrix and one of
a 100 × 100 matrix is performed. From Table 1 it is obvious
that the time savings are huge. Moreover, if the required data
covariancesCX andCB where precomputed in advance, thus
there was no need to iterate through the whole input set con-
taining 8312 i-vectors in each iteration, additional speed up
was acquired even if TF had to be recomputed for each dis-
tinct value of Ji (“exact” case). And as expected, fixing ρ and
using all the enhancements gives us the fastest algorithm. To
show the impact of fixed ρ on the verification performance of
the SR system experiments were carried out on ”short2-short3
trials” from NIST SRE 2008 [14], only the male telephone
speech was used (648 target speakers and 1535 test speakers)
yielding 16968 trials in total. Error rates are given in Table 2,
note that the effect on the performance of the SR system is
negligible.

4. CONCLUSION

A novel implementation of the estimation algorithm of pa-
rameters of the PLDA model was described. Main contribu-
tions are the computational savings related to the inversion of
a huge dense matrix. It was also shown how to make the es-
timation independent of the size of the development set. And
moreover, greater insight into the method was provided.
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