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ABSTRACT

The importance of phonetic variability for short duration speaker
verification is widely acknowledged. This paper assesses the perfor-
mance of Probabilistic Linear Discriminant Analysis (PLDA) and
i-vector normalization for a text-dependent verification task. We
show that using a class definition based on both speaker and pho-
netic content significantly improves the performance of a state-of-
the-art system. We also compare four models for computing the ver-
ification scores using multiple enrollment utterances and show that
using PLDA intrinsic scoring obtains the best performance in this
context. This study suggests that such scoring regime remains to be
optimized.

Index Terms— Speaker verification, Text-Dependent, i-vector ,
short duration, PLDA

1. INTRODUCTION

Text-dependent speaker verification is the task of authenticating a
person based on his/her voice within a constrained “phonetic con-
text”. The phonetic constraint is imposed by requiring the speaker
to pronounce certain pass-phrases, fixed or randomly generated dur-
ing the authentication [1]. Text-dependent speaker verification offers
several advantages. First by constraining the phonetic content of the
test utterances, text-dependent speaker verification reaches higher
accuracy than its text-independent counterpart; especially in dealing
with short-duration utterances [2, 3]. Secondly, in cases whereby the
users are assigned or are allowed to choose their personalized pass-
phrases, security is reinforced as both the pass-phrase and the voice
of the user have to match in order to be authenticate. In this work, we
consider that users are free to choose their own pass-phrase shorter
than 3 seconds.

System based on i-vectors [4] and Probabilistic Linear Dis-
criminant Analysis (PLDA) are among the state-of-the-art in text-
independent speaker verification. Recently, i-vectors have been
used for text-dependent verification [5] and we show in [6] that
they can take advantage of the phonetic constraint imposed on short
duration utterances. Indeed, contrary to text-independent speaker
verification task which aims at inferring speaker identity regardless
of the text pronounced, text-dependent speaker verification takes
into account both speaker characteristic and the lexical content of
the test utterances. Therefore, we show in [6] that normalizing i-
vectors according to this additional knowledge leads to significant
improvement in term of accuracy in all conditions. In this work we
extend the use of class definitions that include speaker and phonetic
information to PLDA training. To the best of our knowledge, no
work related to PLDA in the context of text-dependent verification
has been reported.

One advantage of PLDA is to natively takes into account the
fact that multiple enrollment i-vectors are generated by the same

speaker [7]. Focusing on short duration, it would be easy during
the enrollment phase to require several recordings from the client
speaker. Typically, three occurrences of a pass-phrase would keep
the recording duration below 10 seconds and improve the accuracy.
Other ways of computing a verification score using multiple enroll-
ment sessions for a speaker may be consider and we propose in this
work to compare some of those scorings with the original scoring of
the PLDA.

This paper is organized as follows. The speaker verification en-
gine and the experimental set-up are described in Section 2 and Sec-
tion 3 respectively. The results and analysis relative to the definition
of training classes is given in Section 4 while comparison of the dif-
ferent verification scores is presented in Section 5. Perspective of
this work are discussed in Section 6.

2. I-VECTOR BASED SPEAKER VERIFICATION

2.1. The Total Variability Paradigm

An i-vector is the compact representation of a variable-duration
recording in a low-dimensional space called Total Variability space
[4]. The i-vector x(n,s) of the sth session of the nth speaker re-
sults from a probabilistic projection of a higher-dimensional vector
m(n,s) onto the total variability space spanned by the columns of the
Matrix T, as given by

m(n,s) =M+ Tx(n,s) (1)

where m(n,s) andM are the mean super-vectors of the speaker- and
session-dependent Gaussian Mixture Model and the Universal Back-
ground Model respectively.

2.2. Spherical Nuisance Normalization

Most of the discriminative algorithms used in speaker verification
are based on the assumption that observations follow a normal dis-
tribution which is not the case for i-vectors in practice [8]. Thus,
several normalization techniques have been proposed to make the
i-vector distribution closer to the Gaussian assumption [9, 10].
Amongst those techniques, Spherical Nuisance Normalization (Sph-
Norm) proposed in [11] has been shown to especially improve
performance of PLDA-based systems. This iterative algorithm esti-
mates the within-class covariance matrix, W and mean µ of a large
background set of i-vectors to transform an i-vector x according to:

x← W−
1
2 (x− µ)∥∥W−
1
2 (x− µ)

∥∥ (2)

This transformation first applied to the test i-vectors is then used
on the background set itself before re-estimating both W and µ to
perform another iteration.
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2.3. Probabilistic Linear Discriminant Analysis

The generative modeling of Probabilistic Linear Discriminant Anal-
ysis (PLDA) [7] assumes that observations from a same speaker lie
in a similar part of the space. In this work we use a simplified version
of PLDA, described by Equation 3, where µ is the overall mean of
the data and F is a low rank matrix which column vectors form a ba-
sis of a subspace of the Total Variability space. The hidden variable
hn can be seen as the coordinates of the nth speaker in this subspace
and ε is a normally distributed additive noise of full covariance ma-
trix Σ.

x(n,s) = µ+ Fhn + ε (3)

Details about the implementation can be found in [12].

2.4. Verification Score Computation

In this work, we consider a verification task with multiple enroll-
ment utterances. Given a set of L enrollment i-vectors {xl}l∈[1,L]

generated by a target speaker and a test i-vector xL+1, a verification
score can be computed as the likelihood ratio of two hypotheses H1

and H0. Hypothesis H1 assumes that the set of i-vectors {xl}l∈[1,L]

and xL+1 have been generated by the client whileH0 assumes xL+1

has been generated by an impostor different from the client. This
section describes four different manners of computing the verifica-
tion score based on the i-vector/PLDA framework.

MS-LLR: PLDA intrinsically provides an elegant way of comput-
ing a multiple-segment log-likelihood ratio (MS-LLR) between hy-
potheses H1 and H0. Models for these two hypotheses are shown in
Figure 1.a. In the upper part, {xl}l∈[1,L] and xL+1 come from the
same speaker and thus share the same speaker-specific latent vari-
able h12 while in the lower part, under hypothesis H0, {xl}l∈[1,L]

and xL+1 inherit from different latent variables h1 and h2. In [12],
it was shown that the verification score S can be written as:

S =
1

2

[( L+1∑
l=1

xt
l

)
KL+1

( L+1∑
l=1

xl

)
−
( L∑

l=1

xt
l

)
KL

( L∑
l=1

xl

)
− xt

L+1K1xL+1

]
+ α(L)

(4)

where KL and α(L) are defined as follows.

KL = ΣF(L · FtΣF + I)−1FtΣ (5)

α(L) = log

[
det((L+ 1) · FtΣF + I)−1

det(L · FtΣF + I)−1 · det(FtΣF + I)−1

]
(6)

FUSION: a second verification score is computed by considering that
all enrollment segments are statistically independent. Thus, the ver-
ification score is given by the sum of log likelihood ratios computed
for each enrollment segment separately. This scoring is described by
the model of Figure 1.b and can be seen as a fusion of scores [13].
An expression of this model is given below.

S =
1

2L

L∑
l=1

[(
xt

l + x
t
L+1

)
K2

(
xl + xL+1

)
− xt

lK1xl

− xt
L+1K1xL+1

]
+ α(1)

(7)

UNIQUE-IV: statistics from all enrollment sessions of a speaker
are accumulated and used to extract a unique i-vector x̃ that could
then be used in the PLDA framework Under this configuration, hy-
potheses H1 and H0 correspond to the models given in Figure 1.c
and expression of the verification score is similar to equation 4 for
L = 1.

MEAN-IV: another expression of the verification score follows the
model given in Figure 1.c except that the enrollment i-vector x̃ is
now the mean of all enrollment i-vectors from the target speaker
such that x̃ = 1

L

∑L
l=1 xl. Note that the random variable x̃ is the

sample mean of x and thus only follows a Gaussian assumption if
the number of sample L is fixed. However, even in this specific case,
the variances of x̃ is smaller than the variance of x modeled by the
PLDA. Under this assumption, the verification score is computed as,

S =
1

2

[
1

L2

( L∑
l=1

xt
l + Lxt

L+1

)
K2

( L∑
l=1

xl + LxL+1

)
− 1

L2

( L∑
l=1

xt
l

)
K1

( L∑
l=1

xl

)
− xt

L+1K1xL+1

]
+ α(1)

(8)

Comparing (4), (7) and (8) it appears that the verification scores
are very similar and mainly differ by the weights given to the en-
rollment and the test i-vectors at different terms. Another difference
comes from the fact that the first two terms of the score fusion ex-
pression, does not involve cross terms between the enrollment seg-
ments accordingly to the independence assumption. Notice that, the
four models are identical for the case of L = 1.

3. EXPERIMENTAL SET-UP

3.1. Protocol

Experiments are reported on the male Part 1 of the RSR2015
database, a publicly available speech corpus for text-dependent
speaker recognition recorded at Institute for Infocomm Research,
A*STAR, Singapore [14]. RSR2015 contains audio recordings from
300 speakers, 143 female and 157 male in 9 sessions each, with
a total of 151 hours of audio. In all 9 sessions of RSR2015 Part
1, each speaker pronounces 30 sentences from the TIMIT database
[15] covering all English phones. Average duration of recordings
over all speakers and sessions is 3.2 seconds

A set of 100 speakers pronouncing the first 15 sentences of this
part is reserved for background training of the PLDA and SphNorm
parameters totalizing 13,475 utterances. The remaining 15 sentences
and 57 speakers are used as test set. This ensures that sentences
and speakers used for testing do not overlap the background data.
From the 9 recording sessions available for each of the 57 speakers,
3 are used for enrollment and 6 as test segments. Three enrollment
conditions are defined using 1, 2 and 3 occurrences of a same pass-
phrase. In these conditions, each speaker is used to create 45, 45 and
15 different models respectively. When considering two occurrences
for the enrollment, all 3 possible pairs of i-vectors are considered for
each speaker and pass-phrase. A trial involves comparison of one
model with an i-vector extracted from a test-segment. All cross-
pairs between models and test-segments made available with the 57
speakers of the test set are used.

Contrary to text-independent speaker verification systems which
only have to differentiate between the correct user (CLIENT) and
any other impostor (IMP), text-dependent systems have to consider
whether the text pronounced during the test is the same as the one
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Fig. 1: Graphical models of verification task for different definitions of verification score. Hypothesis H1 states that enrollment and test
data are from the same speaker and share the same latent variable h12 while the alternative hypothesis H0 states that they are from different
speakers and thus inherit from different latent variables h1 and h2.

used for enrollment or a different one. Table 2 shows the different

Table 1: The different types of trials defined for text-dependent
speaker verification. For each type of trial, the number of tests is
given when considering (1/2/3) occurrences of the enrollment pass-
phrase respectively.

Same phonetic content Different phonetic content
Target CLIENT-same CLIENT-diff

speaker (15,348 / 15,348 / 5,116) (214,872 / 214,872 / 71,624)

Impostor IMP-same
(859,488 / 859,488 / 286,496)

types of trials considered in this work. In the rest of this paper, we
consider client pronouncing the same pass-phrase (CLIENT-same)
as target trials and only focus on two types of impostures, namely
CLIENT-diff and IMP-same as we observed in [6] that impostors
pronouncing a different sentence are easier to reject and thus will
not be considered in this work.

3.2. Configuration

Due to the limited amount of data recorded at 16kHz available for
our system development, all data from RSR2015 have been down-
sampled to 8kHz. The i-vector system uses acoustic features of 13
PLP coefficients with their first and second derivatives. RASTA fil-
tering, VAD detection [16], CMS and Gaussianization were applied.
A gender dependent 2048-distribution Universal Background Model
is trained on NIST-SRE 2004 and 2005 data. The Total Variability
matrix of rank 400 is trained using 28,727 session from NIST-SRE
2004, 2005, 2006, SwitchBoard II phases 2 and 3 and Fisher English
parts 1 and 2 male speakers. The i-vector extractor and i-vector nor-
malization are realized using the ALIZE toolkit [17]. When applied,
3 iterations of Spherical Nuisance normalization are used.

4. CLASS DEFINITION FOR PLDA AND SPHNORM

Here we propose to compare two definitions of classes used for
PLDA training and i-vector normalization. In the first configura-

tion we consider that each speaker defined exactly one class. This
definition, similar to the one used for text-independent speaker veri-
fication is referred as Spk. For the second configuration, referred as
Spk+Phon, each class takes advantage of the phonetic content and is
defined by a unique couple speaker/pass-phrase. The background set
of data used for Spherical Nuisance Normalization and PLDA train-
ing includes 100 speakers pronouncing 15 sentences which gives 100
classes for the Spk configuration and 1500 classes for Spk+Phon. It
is worth mentioning that the 15 sentences used for PLDA training
are not the same as those used for the verification tests.

For each configuration, two experiments are performed by nor-
malizing or not the i-vectors with SphNorm. Results of the four
experiments are given in Table 2. Observation of rows 1 and 3
of Table 2 shows that training the PLDA on the spk+Phn instead
of spk classes provides a substantial improvement as the Equal Er-
rors Rate (EER) drops by 87% and 30% relative when considering
CLIENT-diff (from 16.58% to 3.68%) and IMP-same (from 10.35%
to 7.20%) trials respectively. Moreover, PLDA model trained on
spk+Phn classes reject CLIENT-diff better that IMP-same as EER
become respectively 3.68% and 7.20% when the tendency is the op-
posite for training on spk+Phn classes. According to our previous
observation in [6], this result suggests that phonetic variability is
more important than speaker information for the short pass-phrases
of RSR2015 database.

Table 2: Performance of the PLDA system for spk and spk+Phn
definitions of classes with and without Spherical Nuisance Normal-
ization. The results are given in percentage of EER for two types of
non-target trials: client pronouncing a pass-phrase different from the
enrollment one (CLIENT-diff) and impostor speakers pronouncing
the enrollment pass-phrase (IMP-same). Enrollment using only one
occurrence of the pass-phrase.

Configuration Normalization CLIENT-diff Imp-same

Spk - 16.58 10.35
SphNorm 15.15 9.06

Spk+Phon - 3.68 7.20
SphNorm 3.44 6.96
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Rows 2 and 4 of Table 2 show that SphNorm consistently im-
proves the performance across class definitions and for the two types
of impostures. The effect of SphNorm appears to be slightly less for
Spk+Phon class definition than for Spk. This may be explain by the
fact that PLDA modeling already takes advantage of the phonetic
information.

5. VERIFICATION SCORES FOR MULTIPLE
ENROLLMENT SEGMENTS

This section compares the four models, as presented in Section 2.4,
for computing the verification scores involving multiple uterrances
of enrollment in PLDA framework. Performance of the different
scorings are given in Table 3 for the two types of impostures consid-
ered in this works and for 1,2 and 3 enrollment pass-phrases.

As expected, increasing the number of enrollment pass-phrases
reduces the error rate in all conditions and for the four verification
scores. The native scoring from PLDA, MS-LLR, reaches the low-
est EER in all configurations. Surprisingly, MEAN-IV scoring ob-
tains similar performance despite the fact that the PLDA model is
not adapted to the distribution of sample-mean i-vectors and that we
expect to loose information by taking the mean of the observations.
Considering FUSION score for verification also leads to similar per-
formance when dealing with CLIENT speakers pronouncing the cor-
rect pass-phrase (CLIENT-diff). However, EER are slightly higher
for IMP-same impostures, i.e. 4.64% against 4.09% and 3.82%
against 3.27% for 2 and 3 enrollment pass-phrases respectively. Fi-
nally, extracting a unique i-vector by accumulating statistics over all
the enrollment sessions doesn’t perform as well as the other verifica-
tion scores in any condition except when dealing with CLIENT-diff
and 3 enrollment pass-phrases. The bad performance of this scor-
ing is probably due to the fact that information about the between-
utterance variability is lost when accumulating the statistics across
all uterrances. Similar performances obtained for MS-LLR, MEAN-
IV and FUSION suggest that PLDA’s native scoring is not optimal. As
mentioned previously, the scoring described in (4), (7) and (8) show
some similarities and share the same characteristic, i.e. all enroll-
ment segments are considered as equally important. Thus PLDA’s
native scoring does not take any benefit from the multiple enrollment
segment as it is suppose to do.

6. CONCLUSION

This work assesses the effect of adding phonetic information to
speaker classes into PLDA training for text-dependent speaker ver-
ification. Substantial improvements are reported for two types of
impostures as the EER is reduced by 87% relative when considering
the client speaker pronouncing a wrong pass-phrase and by 30%
relative in case of attack from an impostor speaker who pronounces
the correct pass-phrase. Additional improvement can be brought by
normalizing the i-vectors with Spherical Nuisance Normalization
trained on speaker and phonetic classes.

Comparing four definitions of verification score defined in the
PLDA framework we show that, when using multiple enrollment
utterances, the native PLDA scoring obtains the best performance.
However, the fact that this scoring obtains similar performance as a
score based on the mean of enrollment i-vectors and a score based
on a fusion of scores show that this score definition is not optimal.

Table 3: Performance of PLDA system for different verification
score definitions. Results are given in term of Equal Error Rate
(%) for different numbers of enrollment sessions for non-target trials
considering client speakers pronouncing a pass-phrase different from
the enrollment one (CLIENT-diff) and impostor speakers pronounc-
ing the same pass-phrase (IMP-same). All i-vectors are normalized
using 3 iterations of Spherical Nuisance Normalization.

Verification Number of
Impostor Scores Enrollment i-vectors

1 2 3

CLIENT-diff

MS-LLR

3.44

1.67 1.35
MEAN-IV 1.82 1.36
FUSION 1.91 1.50

UNIQUE-IV 2.30 1.36

IMP-same

MS-LLR

6.96

4.09 3.27
MEAN-IV 4.15 3.35
FUSION 4.64 3.82

UNIQUE-IV 6.20 4.50

Indeed, all these three score definitions consider all enrollment seg-
ments as equally important, which seems highly sub-optimal. Fu-
ture work will focus on including prior knowledge about the differ-
ent enrollment segments into the PLDA scoring in order to increase
the benefit of multiple enrollment utterances. Further experiments
following this work show that the behavior of the proposed scor-
ings vary depending on the number of enrollment utterances avail-
able raising the question of the balance between enrollment and test
segments in the PLDA scoring.
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