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ABSTRACT

In this paper, we describe the speaker verification (SV) systems de-
veloped by Indian Institute of Technology Guwahati (IITG) for the
NIST 2012 speaker recognition evaluations. The primary submis-
sion consists of five gender dependent SV systems combined at score
level. Among the five systems two are based on sparse representa-
tion over learned and exemplar dictionaries, and the remaining are
based on the generic i-vector and its variants obtained by vowel and
non-vowel conditioning. The exemplar dictionary based system in
particular exploits the new evaluation rule allowing the knowledge
of all targets in each detection trial. The performance of the system
is presented for the NIST SRE 2012 core task.

1. INTRODUCTION

The NIST SRE 2012 is the most recent one in the on going series
of speaker recognition evaluations (SREs) conducted by the national
institute of standards and technology (NIST). NIST has introduced
several changes in the SRE 2012 compared to the earlier ones. In
previous evaluations, the evaluation data set, which is released at
the beginning of the evaluation period, has contained both training
and test data. In SRE 2012, most of the target speakers are taken
from previous SRE datasets and the corresponding training data was
provided to the participants well in advance of the evaluation pe-
riod. Furthermore, in SRE 2012 the training data for each such tar-
get speaker includes a fairly large number of speech segments taken
from multiple recording sessions. In SRE 2012 the knowledge of
all targets is allowed in computing the detection score of each trial.
To examine the effect of these new conditions on systems’ perfor-
mance, test segments from non target speakers are also included in
the test data set which forms un-known non-target trials in addition
to the known non-target trials. The decision cost continues as the pri-
mary performance measure and it’s computation method is modified
to accommodate the known and unknown non-target trials [1].

Recently proposed i-vector representation [2] forms the basis for
most of the state-of-the-art speaker recognition systems. i-vectors
can be considered as a compact and fixed dimension representation
of speech utterances. i-vectors are being used with classifiers like
support vector machines, cosine kernel or with Bayesian methods
like PLDA to perform speaker verification. One of the major chal-
lenges in speaker recognition research is the mismatch due to session
and channel variability. Various session and channel compensation
methods used with modern speaker recognition stems include LDA,
WCCN, NAP and JFA.

In last few years, the discriminative abilities of the sparse rep-
resentation techniques have also been exploited for speaker recog-
nition. In [3], Kua et. al. proposed a speaker identification sys-
tem which uses sparse representation classification (SRC) with an
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exemplar dictionary created using GMM mean supervectors. Later
speaker verification (SV) tasks using the SRC with exemplar dic-
tionary created using GMM mean supervectors and total variability
i-vectors were also reported in [4] and [5] respectively. In our ear-
lier work [6], we have explored the use of exemplar dictionary based
SRC for the speaker verification task in realistic environment, which
gave an improved performance compared to the conventional GMM-
UBM based system. Later in [7] we have presented a speaker ver-
ification system employing sparse representation of centered GMM
mean supervectors over a dictionary learned using the KSVD algo-
rithm. We have extended this work with the use of discriminatively
learned dictionaries in [8, 9] and the proposed system was compared
to the SRC over exemplar dictionary based SV system as well as the
existing i-vector based SV system. On NIST SRE 2003 dataset, the
proposed system with discriminatively learned dictionary found to
outperform all other SV systems considered both with and without
session/channel variability compensation. Motivated by this we have
used the SRC over learned dictionary based SV system as a subsys-
tem for our NIST SRE 2012 submission. To exploit the availability
of multiple training segments for most of the speakers, and the new
rule allowing the usage of allowing the knowledge of all targets in
each detection trial, we have also used an SRC system with exemplar
dictionary.

Recent works from our group [10, 11] have explored the use
of vowel and nonvowel like regions of speech for SV by building
systems exclusively for vowel like and nonvowel like regions and
combining them at score level. Experiments conducted with both
GMM-UBM and i-vector based systems on NIST SRE 2003 data
set showed significant improvements in performance especially in
degraded conditions. The drawback of this method was the compu-
tational complexity involved in the segmentation of training and test
speech signals into vowel and nonvowel like regions which made it
difficult to use with very large data sets like SRE 2012. Motivated by
the improved results obtained by the said conditioning, we have de-
veloped a similar method which avoids the segmentation of training
and test speech. This novel idea uses a total variability (T) matrix
conditioned with vowel and nonvowel like speech data for extract-
ing the i-vector representation for training and test speech signals.
Based on the methods adopted for building the conditioned T ma-
trix we have built two variants of the vowel-nonvowel conditioned
i-vector systems for the NIST 2012 evaluations.

In addition to the four systems mentioned above, we have also
developed a generic i-vector based system for the evaluation. The
primary system for the ’core’ task is the score level fusion of two
sparse representation based systems, two vowel-nonvowel condi-
tioned i-vector based systems and a generic i-vector based systems.
The alternate-1 system is the fusion of only sparse representation
based systems while the alternate-2 system is the fusion of the two
vowel-nonvowel conditioned i-vector systems.
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Fig. 1. Block diagram of the IITG primary system for the NIST SRE 2012

2. DATA PROCESSING, FEATURE EXTRACTION AND
UBM

In NIST SRE 2012, the training and the test datasets include speech
data recorded in three different conditions viz. telephone recorded
phone call, microphone recoded interview and microphone recorded
phone call. As the training data is mostly derived from the training
and test sets of the SRE’06, SRE’08 and SRE’10 evaluations, we
have used data from same datasets for the system development.

In NIST SRE 2012, multiple training segments are available for
most of the speakers. As the duration of training segments provided
are varying from a few seconds to minutes, we have redistributed
the data into segments of approximately equal duration prior to us-
ing it for modeling the speakers. Standard MFCC features of 13
dimensions with their first and second derivatives are used as the
base features for all systems. To remove the non-speech portions
from input data, an energy based voice activity detector is used. The
cepstral mean subtraction and variance normalization are also ap-
plied on feature vectors so as to reduce the effect of mismatch due to
channel.

Two gender-dependent universal background models (UBMs) of
1024 Gaussian mixtures are created and are used in all the developed
systems. The male UBM is created using approximately 40 hours of
telephone recorded speech data of 725 speakers taken from the de-
velopment data. Similarly the female UBM is learned using 50 hours
of telephone recorded speech data of 1099 speakers taken from the
development data. The MFCC feature extraction and UBM building
are done using the HTK toolkit[12].

3. SESSION AND CHANNEL COMPENSATION

In this section, the various session and channel compensation tech-
niques used are described.
3.1. Joint factor analysis

Joint factor analysis (JFA) is used for removing the session and
channel factors from the GMM mean supervectors by modeling the
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speaker and session and channel subspaces. The gender dependent
UBMs are used to collect the 0 and 1°* order statistic for training
gender dependent JFA systems. We have used two types of JFA im-
plementations to use with our SV systems and are described below.

JFA type-I: The type-I implementation of JFA closely follows
the method described in [13]. First, the eigenvoices are trained on
the telephone speech from the development dataset. Then a set of
eigenchannels is trained on telephone speech only after removing
the earlier learned speaker factors. It is then followed by learning
another set of eigenchannels on microphone speech while removing
the speaker and telephone channel factors.

JFA type-II: In the type-II implementation of JFA, eigenvoices
and eigenchannels are learned by pooling the telephone and micro-
phone speech data from the development dataset.

3.2. Linear discriminant analysis and Within Class Covariance
Normalization:

Standard Linear discriminant analysis (LDA) [2] and Within Class
Covariance Normalization (WCCN) [14] techniques are used to per-
form session/channel compensation for i-vectors.

4. SPEAKER VERIFICATION SYSTEMS

Figure 1 shows the block diagram of the IITG primary system for the
NIST SRE 2012. This shows the fusion of five of our sub-systems
which are described in the following subsections

4.1. SRC over exemplar dictionary based SV system

In this system, the speaker verification is done by finding the sparse
representation of the vector representing the test data over a exem-
plar dictionary D created using the vectors representing the training
data of all the target speakers[6]. This system in particular exploits
the new evaluation rule allowing the knowledge of all targets in each



detection trial. Given M target speakers each having multiple train-
ing examples represented as {y,,”i}fi}‘{ , the exemplar dictionary D
is constructed as follows,

7y25N27"'7"'7yM’NM} (1)

D= [yl’lv s Y1,N1 5 Y2,1, -

The session and channel compensated GMM mean shifted super-
vectors are used to represent speech utterances in a vector form.
JFA type-1 with 300 eigen voices, 100 telephone eigen channels
and 100 microphone eigen channels is used for removing the ses-
sion and channel factors from the supervectors in case of telephone-
telephone trials. Similarly, JFA type-II with 300 eigen voices and
200 telephone eigen channels is used with microphone-microphone
and microphone-telephone trials. For the classification, the sparse
projection x of the test vector y over the dictionary D is obtained
using the OMP algorithm with sparsity constraint of 50. The method
followed for computing the verification score is described in the
Sec. 5

4.2. SRC over learned dictionary based SV system

This system employs sparse representation of channel compensated
GMM mean shifted supervectors over a learned dictionary for mod-
eling speakers [8]. The GMM mean shifted supervector y is mod-
eled using the sparse representation with a learned dictionary D as,

y= Dz )

‘We have used JFA type-II with 300 eigen voices and 200 telephone
eigen channels for removing the session and channel factors from
all of the mean shifted supervectors as a pre-processing. A gender
dependent dictionary of 1000 atoms is learned on the development
data using the KSVD algorithm [15]. The sparse representation vec-
tor & for both training and test data are estimated using the orthogo-
nal matching pursuit (OMP) algorithm with a sparsity constraint of
50. The verification score for a given trial is computed using cosine
kernel as described in Sec. 5.

4.3. Generic i-vector based SV system

This is an implementation of the generic i-vector system suitable for
telephone and microphone speech proposed in [16]. Here the GMM
mean supervector s for a speaker is represented as,

s=m+ [Tphan'mic]w (3)

where, m is the speaker-independent UBM mean supervector, Tphnn
is the total variability matrix learned using telephone data, Ty;c is
the total variability matrix learned using microphone data and w is
the i-vector. LDA and WCCN are used to compensate the session
and channel effects in the i-vectors. The method followed for finding
the verification score is described in the Sec. 5.

4.4. Vowel and nonvowel like regions conditioned i-vector based
SV system

In this system, the columns of the total variability matrix learned
using telephone and microphone data are further conditioned with
vowel-like regions (VLRs) and nonvowel like regions (nonVLRs) of
the development speech data. With this, the Eq. 3 will be modified
as,

s=m+ [Tphn,'ul |Tphn,nvl ‘T'm,i(:,'ul |Tmic,nvl]w (4)

where, Thn, vt and Tppn nvt represent the subspaces corresponding
to the VLRs and nonVLRs learned using telephone data and T, ic, o1
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Table 1. Performances of individual and fused SV systems on the
development data set in terms of DCF values

[ No. [ System | Act. DCF | Min. DCF |
i SRC with exemplar dictionary 0.16 0.13
ii SRC with learned dictionary 0.31 0.27
iii | Generic i-vector 0.29 0.26
iv V-NV conditioned i-vector 0.31 0.25
v NV-V conditioned i-vector 0.28 0.28
vi Fusion: i to v (Primary) 0.14 0.13
vii | Fusion: i & ii (Alternate -1) 0.15 0.12
viii | Fusion: iv & v ( Alternate -2) 0.29 0.25

and T4, nv1 Tepresent the subspaces corresponding to the VLRs and
nonVLRs learned using microphone data. The VLRs are detected
following the similar procedure as that given in [11]. The nonVLRs
are selected by excluding the VLRs from the speech regions detected
using an energy based VAD. The conditioned T matrix for this sys-
tem is learned in a similar fashion to that of the generic i-vector
system described in the Sec. 4.3. Two approaches are considered
with emphasize on either VLRs or nonVLRs as explained below:

4.4.1. VLRs emphasized i-vector system

In this system, the subspaces representing VLRs are learned prior to
that representing the nonVLRs for both telephone and microphone
speech cases. We have learned 450 eigen vectors corresponding to
the VLR and 350 eigen vectors corresponding to the nonVLR.

4.4.2. nonVLRs emphasized i-vector system

In this, the estimation of nonVLR subspaces is followed by that of
the VLR subspaces. We have learned 450 eigen vectors correspond-
ing to the nonVLR and 350 eigen vectors corresponding to the VLR.

5. SCORING, CALIBRATION AND FUSION

In this section we describe the different scoring methods used for the
developed SV systems and the calibration and fusion of the scores to
get the final likelihood ration scores for submission.

5.1. Scoring methods

In NIST 2012 SRE, multiple training segments are available for
most of the speakers which includes both telephone and microphone
recorded data. For all speakers, at least one telephone recorded train-
ing utterance is available. Based on the test data recording channel
and the availability of telephone/microphone models for the claimed
speaker, we have used different test strategies for different systems
as given below.

1. i-vector based systems: The telephone and microphone
speaker models for each speaker are created by taking the
mean of the i-vectors of the telephone and microphone train-
ing utterances available for that speaker, respectively. All
telephone test segments are tested against telephone models.
In case of microphone test segments, microphone models are
used for scoring if available and telephone models are used
otherwise. Scores for a trial is found using cosine kernel as
given below.

Score= < Tetm: List > fﬁdm' :ifSt > %)
[ Zetm | l|2est |
where & ¢, and @+4+ represent the model vector and test vec-
tor, respectively.



Table 2. Performance of the primary, alternate-1 (SRC based) and alternate-2 (Vowel-Nonvowel conditioned i-vector based) systems for the
common evaluation conditins of the NIST SRE 2012 core task [1] in terms of actual and minimum DCF

Systems submitted to NIST SRE 2012
Evaluation condition Primary (all fused) Alt.-1 (Sparse only) Alt.-2 (Cond. i-vect. only)
Act. DCF | Min. DCF | Act. DCF | Min. DCF | Act. DCF | Min. DCF
No noise 0.42 0.33 0.40 0.37 0.56 0.37
Phone call | Added noise 0.51 0.35 0.48 0.42 0.69 0.41
Noisy env. 0.45 0.29 0.42 0.36 0.60 0.33
Interview No noise 0.44 0.43 0.47 0.44 0.53 0.48
Added noise 0.62 0.45 0.84 0.48 0.58 0.48
2. SRC over learned dictionary based SV system: Telephone 6. RESULTS

and microphone speaker models for each speaker are created
by taking the weighted average of the sparse vectors repre-
senting the training data for a given speaker. While creat-
ing the telephone speaker models, a weight of 0.7 is given to
vectors representing telephone speech and a weight of 0.3 is
given to the sparse vectors of microphone speech. All tele-
phone test segments are tested against telephone models. In
case of microphone test segments, microphone models are
used for scoring if available and telephone models are used
otherwise. Scores for a trial is found using cosine kernel sim-
ilar to the i-vector systems case.

3. SRC over exemplar dictionary based SV system: The ex-
emplar dictionary is created by pooling the supervectors cre-
ated using the telephone training data for all speakers for
both telephone and microphone test cases with the follow-
ing exemption. The score for a given trial is found from
the sparse representation vector  as the {1 norm |61 (2)||1
where, 01 (&) is a vector whose nonzero entries are the only
entries corresponding to the training vectors of the claimed
speaker in the exemplar dictionary.

5.2. System tuning using development trials

For finding the optimal parameters for the SV systems, we have used
a set of development data set and trials. The system training was
done using a part of the actual SRE 2012 training data. A test data
set of about 4000 segments created using the other part of the actual
training data was used to perform about 80000 trials. The various
system parameters were tuned using this development trials.

5.3. Calibration and fusion

Mapping of the scores generated by sub systems to log-likelihood ra-
tios (LLR) and fusion of these LLRs were performed the BOSARIS
[17] toolkit which uses the linear logistic regression method for the
same. The scores from the development trials which is described in
the previous subsection was used to train the calibration and fusion
process. The primary submission for the core-core task is the score
level fusion of all five subsystems described in the above section.
The first alternate submission for the core-core task is the score level
combination of the two sparse representation based systems i.e. the
SRC over learned dictionary based and SRC over exemplar dictio-
nary based SV systems. The second alternate submission for the
core-core task is the score level fusion of the two vowel-nonvowel
constrained SV systems.
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The Table 1 shows the performance in terms of actual and minimum
detection costs [1] for various SV systems on the development trials.
As the development test set does not contain speech segment from
any ‘unknown’ speaker, the Py,,known Was set to 0 while computing
the detection cost. It can be noted that the SRC with exemplar dic-
tionary based SV system which exploits the new evaluation rule al-
lowing a closed set speaker verification, performs significantly better
than all other systems in consideration. The SRC with learned dic-
tionary based and the two variants of i-vector systems are observed
to be performing comparable to that of the generic i-vector system.
We have also observed that all other systems contribute improve-
ments while fused with the best performing system. The table also
shows the performance of the three different system combinations
submitted as the primary and two alternate systems evaluated using
the development trials. These scores were used to train the fusion
and calibration of the corresponding systems on the actual evalua-
tion trials.

The performance of the primary and alternate systems on the
actual evaluation trials of the NIST SRE 2012 for the five common
conditions [1] of the core task are summarized in the Table 2. On
comparing the performance of the alternate systems with that of the
primary one, it can be noted that the sparse representation based sys-
tems have performed better than the i-vector based ones in all the
cases except the noise added interview case, in terms of actual DCF.
We are not able to report the performance of the individual subsys-
tems and its analysis here as the new evaluation tools from the NIST
is not available at the time of submission of this paper.

7. SUMMARY

In this paper, we have described the speaker verification (SV) sys-
tems developed by the Indian Institute of Technology Guwahati for
the NIST SRE 2012. The five parallel gender dependent subsys-
tems developed include two sparse representation based SV systems,
two vowel-nonvowel conditioned i-vector SV systems and a generic
i-vector SV system. The performances evaluated on the develop-
ment trials and on the actual evaluation trials shows the potential
of the sparse representation over exemplar dictionary based SV sys-
tems which exploits the new evaluation rule allowing the closed set
speaker verification.
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