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ABSTRACT

Speaker recognition systems trained on long duration utterances are
known to perform significantly worse when short test segments are
encountered. To address this mismatch, we analyze the effect of du-
ration variability on phoneme distributions of speech utterances and
i-vector length. We demonstrate that, as utterance duration is de-
creased, number of detected unique phonemes and i-vector length
approaches zero in a logarithmic and non-linear fashion, respec-
tively. Assuming duration variability as an additive noise in the i-
vector space, we propose three different strategies for its compensa-
tion: i) multi-duration training in Probabilistic Linear Discriminant
Analysis (PLDA) model, ii) score calibration using log duration as
a Quality Measure Function (QMF), and iii) multi-duration PLDA
training with synthesized short duration i-vectors. Experiments are
designed based on the 2012 National Institute of Standards and Tech-
nology (NIST) Speaker Recognition Evaluation (SRE) protocol with
varying test utterance duration. Experimental results demonstrate
the effectiveness of the proposed schemes on short duration test con-
ditions, especially with the QMF calibration approach.

Index Terms— Speaker verification, short utterance, quality
measure fusion (QMF), i-vector

1. INTRODUCTION

Mismatch in utterance duration is a long-standing problem in
speaker recognition. In real world applications, it is very com-
mon that sufficient data is available for speaker enrollment/training,
but the test utterances are very short during recognition. When
speaker models are trained using sufficient amount of data, a variety
of phonemes are captured from the speaker enabling the model to
better represent the speaker’s acoustic space while enhancing its
discriminating ability. This has been especially true since Gaus-
sian Mixture Models (GMM) were introduced for modeling the
acoustic space for speaker recognition [1]. The subsequent research
endeavors focused more on modeling the speaker dependent GMM
mean super-vectors using various factor analysis methods, leading
to techniques such as Eigenvoice [2, 3], Eigenchannel, Joint Factor
Analysis (JFA) [4], and i-vector [5] based speaker recognition sys-
tems. Most of these systems were specifically designed to handle
channel mismatch. The state-of-the-art systems generally utilize the
i-vectors as utterance dependent features and use a Probabilistic Lin-
ear Discriminant Analysis (PLDA) [6, 7] model for classification,
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which are still prone to performance degradation when short dura-
tion utterances are encountered in test [8]. Recently, short duration
test utterance conditions are re-introduced in the NIST SRE 2012 [9]
within common test conditions, leading the research community to
further concentrate on this problem.

A considerable amount of study has been done related to utter-
ance duration mismatch for speaker recognition. Among the ear-
lier works, in [10], this problem was addressed for vector quanti-
zation (VQ) based speaker recognition systems in a small dataset.
Short duration utterances in both training and test for in-set/out-of-
set speaker recognition was considered in [11, 12] using a GMM-
Universal Background Model (UBM) based framework. More re-
cent works considered short duration mismatch in GMM-SVM [13],
JFA [14, 15] and i-vector system framework [8, 15, 16]. In [15],
mismatch in train and test duration was compensated in the total
variability (TV) training phase, demonstrating that short utterances
in the hyper-parameter training provides the optimal performance
when short test utterances are encountered. In [17], special attention
is paid to the effect of duration on calibration.

In this paper, we systematically analyze the effect of duration
on speech utterances and compensate for the mismatch using three
different approaches. Firstly, by introducing short utterances in the
PLDA training so that the model may learn the duration variability
in the i-vector space [8]. Secondly, assuming that duration variation
causes a linear shift in the speaker recognition scores, we propose
a compensation strategy through score calibration. Thirdly, we pro-
pose a method of artificially generating i-vectors [18] of variable
duration utterances and use them for PLDA training.

2. EFFECT OF DURATION ON SPEECH UTTERANCES

2.1. Analysis of Phoneme Distribution

To analyze the effect of truncating speech utterances on the phoneme
space, we collect 19167 telephone recordings of both genders from
the SRE’04,05 and 06 corpora and perform English phoneme recog-
nition [19]. After removing the silence portions detected from the
phoneme transcripts, we calculate the number of unique phonemes
detected from the full utterances and also their truncated versions
having durations of 2, 5, 10, 20 and 40 seconds. The average num-
ber of unique phonemes detected for different durations are plotted
in Fig. 2 in a logarithmic scale, showing that this quantity reduces
exponentially with duration. This partially explains why short dura-
tion utterances cause speaker recognition performances to degrade in
an exponential manner [8]. Histograms of phonemes detected from
a single utterance in its full duration, and short versions are plotted
in Fig. 1, showing the “acoustic holes”/missing phonemes [12] ob-
served when utterances are truncated. The effect of number of sam-
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Fig. 1. Histogram of phonemes detected from an utterances in five different truncated conditions: 5 s, 10 s, 20 s, 40 s and full duration.

ples of unique phonemes and presence of unique phonemes in train
and test phase of speaker recognition requires a deeper investigation.

2.2. Analysis of I-vector Length and Variance
Since i-vectors are Maximum A-posteriori (MAP) point estimates,
when the utterance duration approaches zero, the i-vector ap-
proaches the zero vector. Thus, the i-vector length should gradually
reduce to zero as the utterance is truncated. In this paper, an i-vector
extracted from a full duration and truncated speech utterance will be
referred to as a “full i-vector” and “truncated i-vector,” respectively.

To observe the effect of duration on i-vector length, we extract
i-vectors from the female DEV-train utterances (see Sec 3). For each
speech segment, i-vectors are extracted from the full segment and
four truncated versions of duration 5 s, 10 s, 20 s and 40 s. Let ws ,
wsM denote a D × 1 full i-vector extracted from utterance s, and
wsi denote a truncated i-vector extracted from the same utterance.
Here, i ∈ [1,M ] is an integer defining several fixed durations in
the set D = {di}, where M is the total number of duration values
considered. In our case, D = {5, 10, 20, 40, full} and M = 5. The
average length of truncated i-vectors for duration di is computed by:

L̄i =
1

N

N∑
s=1

||wsi||2. (1)

Here, N is the total number of speech segments in the dataset in
consideration. The average diagonal covariance is computed across
all the i-th duration truncated i-vectors from all segments as:

σ̄i =
1

ND

N∑
s=1

Tr
(

(wsi −ws)(wsi −ws)
T
)

(2)

Here Tr(·) denotes the trace operation. The values of L̄i and σ̄i for
each fixed duration di is summarized in Table 1. From this table, it
is observed that as duration is reduced, i-vector length approaches
zero while the average deviation from full i-vectors is increased.

Table 1. Analysis of length and average variance of truncated i-
vectors obtained from different segment durations

Measure Duration di (seconds)
5 10 20 40

σ̄i 4.10 3.034 1.919 0.935
L̄i 602.7 1038.4 1567.7 2072.4

2.3. Additive Noise Model for Duration Variability
Following the observations, it is natural to model the duration vari-
ability in the i-vectors using an additive noise. In essence, if the i-
vector extracted from a full duration utterance is considered “clean,”
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Fig. 2. Number of unique phonemes detected from varying duration
utterances. The figure is obtained by averaging over 19167 utter-
ances from NIST SRE’04,05,06 gender-mixed telephone data.

the i-vectors extracted from a truncated version of the utterance can
be considered “noisy.” We assume that a truncated i-vector can be
represented by:

wsi = ws + εi (3)
where εi ∼ N (0,Σ) and Σ, represent noise, and within segment
covariance matrix due to duration variability, respectively.

3. EXPERIMENTAL FRAMEWORK

The experimental framework is very similar to what we have used
for the NIST SRE 2012 submission, considering the special condi-
tions in SRE’12 including multiple segments training for a speaker.
The latest lists from NIST are utilized and speech segments for all
1918 speakers are fetched from SRE’06, SRE’08 and SRE’10 cor-
pora and corresponding meta-data are extracted. To be able to assess
the recognition systems’ generalization capability as well as cali-
bration performance, separate development (DEV) and evaluation
(EVAL) sets are prepared. Only segments having a duration greater
than 40 sec are considered. Number of segments, speakers and trials
for each set are given in table 2. In making these sets, the followings
are considered:

1. Test segments are different for DEV-test and EVAL-test.
2. Most of the train segments in DEV-train are added to EVAL-

train. The number of train segments in EVAL-train is almost
twice the number of segments in DEV-train. This is done
to evaluate the systems performance under the condition that
speaker and channel space are already trained but number
of enrollment segments for target speaker modeling has in-
creased.

3. The segments from train and test always had different LDC-
IDs so that the trials always contain a session mismatch.

4. Two disjoint sets of speakers (segments) from SRE’06 data
that did not appear in SRE’12 are added to DEV-test and
EVAL-test to serve as the unknown non-targets.
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Table 2. Number of speakers and speech segments in the DEV and EVAL data sets. The number of known/unknown (k/u) non-target trials
are also shown for the trial statistics.

Gender
Number of speakers Number of segments Number of trials

DEV EVAL DEV EVAL DEV EVAL
Train Test Train Test Train Test Train Test Target Non-target (k/u) Target Non-target (k/u)

Male 680 828 723 803 5475 6501 9730 7078 4801 3259879/1156000 4997 3607834/1504563
Female 1039 1182 1095 1101 8067 8460 14061 9333 6506 6753228/2030206 6770 7406380/2806485

5. For the speakers that telephone and microphone data were
available, both types of channels are included in the training
to make the system more robust to channel variability.

To systematically introduce the duration variability, we prepared
separate versions of these tasks when the test utterances are short.
For each test utterance in DEV-test and EVAL-test, four truncated
segments are created having durations of 5, 10, 20 and 40 seconds.
Thus, including the full utterance, there were five different versions
of each segment. Using these segments, we prepared five experi-
mental conditions with full duration training and variable duration
test. It should be noted that short utterances are generated after
speech activity detection (SAD) and feature extraction, retaining the
exact number of feature frames required for a specified duration.

4. BASELINE SYSTEM

The speaker recognition system consists of a standard i-vector [5]
configuration with PLDA modeling.

4.1. Front-end Processing

In the feature extraction we use 19 MFCC’s plus log energy com-
puted over a window of 30 ms with a skip-rate of 10 ms. After
appending delta and acceleration, feature warping [20] was applied.
Speech activity detection is based on Gaussian modeling of the
frame energy which closely followed [21]. Since we have expected
to deal with noise segments in SRE’12, a Wiener filtering based
speech enhancement module was incorporated in the system front-
end which applied in signal domain for both feature extraction and
speech activity detection. In this way, the speech signal is first en-
hanced by applying the Wiener filter on the amplitude spectrum of
the frames and the noise spectrum is estimated by improved minima
controlled recursive averaging (IMCRA) approach [22, 23]. This
method works based on averaging the previous estimation of the
noise power spectra followed up by smoothing over consecutive
frames using a forgetting factor.

4.2. UBM and TV Space Training

For each gender, a 2048-component diagonal UBM is trained, using
segments from NIST SRE’04–06, Switchboard cellular phase 1 and
2, and Fisher English corpora. The Baum-Welch statistics up to sec-
ond order are computed using the UBMs, which is later used to train
the i-vector extractor matrix T . The matrix T with a rank of 400
has been trained using the statistics from the same utterances used
for training the UBM. For each relevant utterance, a 400 dimension
i-vector is extracted using the sufficient statistics and the matrix T .

4.3. I-vector Conditioning and PLDA modeling

To enhance the class separability, Linear Discriminant Analysis
(LDA) is employed, reducing the i-vector dimension to 200. Finally,
i-vectors are centered, whitened [24] and length-normalized [25].
The speaker and session dependent i-vector distribution is modeled
using PLDA. All of the utterances in DEV-train are used for training

the speaker and channel space with 200 and 50 dimensions, respec-
tively. Each enrollment speaker is modeled by an average i-vector
computed over all of the enrollment i-vectors corresponding to that
speaker. No truncation is performed on enrollment data. The output
scores of PLDA, which is already in the form of log-likelihood-ratio
(LLR), is then converted to calibrated LLR using a linear calibration
transformation. In the last step, the calibrated LLR are mapped to
compound LLR described in [26].

5. PROPOSED METHOD

5.1. Training with Truncated I-vectors

In this method, i-vectors extracted from truncated DEV-train utter-
ances are included in the PLDA training. The long files are cropped
to smaller parts in a overlapping fashion. For each utterance in the
dataset, 4 truncated versions are created by cropping the acoustic
features and i-vectors are extracted. In this way, the number of i-
vectors used in PLDA is increased by 5 times compared to the base-
line setup, but the same speech data/information content is utilized.

5.2. Score Domain Compensation

We propose a QMF based calibration method for duration mismatch
compensation applied on the raw recognizer scores. The calibration
we use for scores s(x, y) for a trial involving training speech seg-
ments x and test segment y is

λ(x, y) = w0 + w1s(x, y) +Q(x, y, w2, . . .) (4)

where Q(x, y, w2, . . .) is a QMF depending on certain quality mea-
sures of the speech samples. The quality measures we used in this
research are the duration of the target train segments and test seg-
ment (after SAD), d(x) and d(y), respectively. Inspired by Fig. 2,
we used the two-parameter function

Q = w2 log d(x)/d0 + w3 log d(y)/d0. (5)

Here d0 is an arbitrary duration constant to keep the dimensions
proper. The total number of parameters was 4 which we found by
minimizing the multi-class cross entropy Hmc [27] over the devel-
opment set. Hmc is defined in terms of the posterior probability of
the true class, by

Hmc =

N∑
i=0

πi
Ni

Ni∑
j=1

− logP (i | x, yj). (6)

Here i indexes the N target speakers, using i = 0 for an unknown
speaker, and j runs over all Ni test segments for which i is the the
speaker. For the priors πi, we were inspired by the SRE’12 core
conditions, setting π0 = 1

2
and πi>0 = 1

2N
. The posterior in (6) is

computed using

P (i | x, yj) =
πie

λi(x,yj)

π0 +
∑N
k=1 πke

λk(x,yj)
. (7)
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Table 3. Performance comparison of the proposed schemes in DEV and EVAL tasks for male trials.
Actual DCF’12 (Cprimary) measures for different test durations

PLDA Calibration DEV EVAL
5 s 10 s 20 s 40 s full 5 s 10 s 20 s 40 s full

Full None 0.9971 0.8508 0.5407 0.2479 0.1046 1.012 0.8531 0.5032 0.2324 0.1208
QMF 0.6898 0.3547 0.164 0.0791 0.0471 0.6552 0.3388 0.1977 0.1366 0.0953

Full+truncated None 0.8273 0.5258 0.2642 0.1318 0.0836 0.8537 0.5449 0.2717 0.1594 0.1201
QMF 0.4981 0.2571 0.1419 0.0856 0.0620 0.4244 0.2163 0.1334 0.0988 0.0747

Full+synthesized None 0.7969 0.4562 0.2188 0.1230 0.0861 0.8260 0.4803 0.2455 0.1595 0.1213
QMF 0.5638 0.2757 0.1405 0.0899 0.0673 0.4909 0.2424 0.1412 0.1051 0.0825

Table 4. Performance comparison of the proposed schemes in DEV and EVAL tasks for female trials.
Actual DCF’12 (Cprimary) measures for different test durations

PLDA Calibration DEV EVAL
5s 10s 20s 40s full 5s 10s 20s 40s full

Full None 0.9831 0.8301 0.5552 0.3068 0.1611 1.0395 0.8706 0.5440 0.2703 0.1636
QMF 0.7184 0.4280 0.2189 0.1256 0.0977 0.7191 0.3973 0.2149 0.1434 0.1220

Full+truncated None 0.8234 0.5710 0.3238 0.1845 0.1293 0.8587 0.5898 0.3093 0.1789 0.1502
QMF 0.5515 0.3299 0.1897 0.1269 0.1059 0.4807 0.2685 0.1579 0.1110 0.1048

Full+synthesized None 0.7930 0.5033 0.2754 0.1730 0.1348 0.7249 0.3973 0.2138 0.1424 0.1209
QMF 0.6638 0.3725 0.2088 0.1405 0.1208 0.5969 0.3087 0.1681 0.1212 0.1152

Note that we use the notation λi(x, yj) to indicate the simple likeli-
hood ratio for test segment yj with speaker i in the target hypothesis
using all available training material x. We used a standard general
numerical optimizer nlm from the R software package for finding
the calibration parameters.

5.3. Synthesized I-vectors using Intra-segment Covariance

In this section, we propose to add artificially generated truncated
i-vectors in PLDA modeling. This is carried out by utilizing the dis-
tributions learned from the global covariance structure of i-vectors
extracted from DEV-train utterances with 4 truncated versions. Us-
ing the additive noise model proposed in (3), we can synthesize trun-
cated i-vectors by adding Gaussian random vectors having an intra-
segment covariance matrix Σ to the full duration i-vector ws. The
procedure of obtaining the inter segment covariance matrix Σ and
generation of synthesized i-vectors is provided in Alg. 1 and 2, re-
spectively. We note that the synthesized i-vectors ŵsj do not rep-
resent a specific duration, rather they follow a global distribution of
truncated i-vectors extracted from fixed duration utterances.

Initialize: Σ← 0D×D;

for segment s← 1 to N do
Compute mean: w̄s ← 1/M

∑M
i=1 wsi

Update scatter: Σ← Σ +
∑M
i=1(wsi − w̄s)(wsi − w̄s)

T

end
Force symmetry: Σ← (ΣT + Σ)/2
Normalize: Σ← 1

N
Σ

Algorithm 1: Estimation of i-vector scatter matrix

6. RESULTS

The results are summarized in Table 3 and 4 for male and female
trials, respectively. We use the NIST SRE’12 detection cost function
(DCF), Cprimary, using Pknown = 0.5 for evaluating the systems.
From the results, we observe the general trend of performance degra-
dation as test utterance duration is reduced [8, 15]. As expected,

Compute Cholesky factorization: Σ = RRT

for Segment s← 1 to N do
Extract full i-vector ws

for Index j ← 1 to M do
Random vector: v← randnD×1 ∼ N (0, I)
Synthesized i-vector: ŵsj ← ws + vR

end
end

Algorithm 2: Computation of synthetic i-vectors

adding truncated i-vectors significantly improve the system perfor-
mance, as in [8]. It is worth noting that when truncated i-vectors are
used in PLDA, the underlying training dataset or the acoustic feature
vectors are essentially the same as when full i-vectors are used. The
performance improvement is attained simply through data reorgani-
zation (see Sec 5.1). Similar improvements are also observed when
the synthesized i-vectors are added in PLDA training. This verifies
that our additive noise model in (3) of duration degradation is valid.
The most significant gain, however, is achieved through the proposed
QMF calibration. The best performance is achieved by using trun-
cated i-vectors in PLDA and with QMF calibration. If QMF is not
applied on the scores, the synthesized i-vectors can provide benefit
compared to the case when only 4 truncated versions are available
to train PLDA. Thus, the application of QMF to model the scores’
behavior with respect to the duration variability is more beneficial
copared to modeling the duration effect in the i-vector space.

7. CONCLUSIONS

In this paper, we have addressed the problem of duration mismatch
in an i-vector based speaker recognition system. Three different
approaches are presented to compensate for the mismatch: using
multi-duration PLDA training, score domain compensation using
quality measure function, and synthetically generated short duration
i-vectors in PLDA training. The proposed methods demonstrate en-
couraging performance improvements on short duration test condi-
tions when compared to the baseline system trained on full duration
utterances.
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