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ABSTRACT

This paper presents a framework for fully Bayesian speaker compar-
ison of i-vectors. By generalizing the train/test paradigm, we derive
an analytic expression for the speaker comparison log-likelihood ra-
tio (LLR), as well as solutions for model training and Bayesian scor-
ing. This framework is useful for enrollment sets of any size. For the
specific case of single-cut enrollment, it is shown to be mathemati-
cally equivalent to probabilistic linear discriminant analysis (PLDA).
Additionally, we present discriminative training of model hyperpa-
rameters by minimizing the total cross entropy between LLRs and
class labels. When applied to speaker recognition, significant per-
formance gains are observed for various NIST SRE 2010 extended
evaluation tasks.

Index Terms— Bayesian speaker comparison, speaker recogni-
tion, i-vector, discriminative training, cross entropy.

1. INTRODUCTION

Within the field of speaker recognition, the i-vector has been pro-
posed as an effective method of extracting discriminative speaker
and channel information in a manageable low-dimensional sub-
space [1]. Due to their low-dimensionality, i-vectors allow for
more sophisticated channel compensation and scoring methods. In
particular, the additive noise model has been used to develop prob-
abilistic linear discriminant analysis (PLDA) scoring in the i-vector
domain [2, 3].

The speaker comparison problem is to determine whether a test
cut was generated by the same speaker as an enrollment set. In this
paper, we present a framework for fully Bayesian speaker compar-
ison with i-vectors, which we refer to as I-BSC. Using the additive
noise model, we present an analytic expression for the log-likelihood
ratio (LLR) of same-speaker to different-speaker hypotheses. Addi-
tionally, we derive accompanying solutions to model training and
Bayesian scoring. When applied to speaker recognition, the single-
cut enrollment case of the proposed framework is observed to be
mathematically equivalent to the PLDA solutions in [2, 3]. The pro-
posed framework, however, easily generalizes to speaker compari-
son with any number of enrollment cuts.

We then present discriminative training of system hyperparam-
eters for Bayesian speaker comparison. We numerically optimize
the across-class and within-class covariance matrices, along with
the across-class mean, by minimizing the total cross entropy be-
tween LLRs and their underlying labels. As discussed in [3], this
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objective function directly addresses the aim of differentiating be-
tween same-speaker and different-speaker hypothesis. Discrimina-
tive training is shown to provide significant gains in speaker recog-
nition performance, when Bayesian speaker comparison is applied
to various NIST SRE 2010 tasks.

This paper is organized as follows. In Sec. 2, we present i-vector
Bayesian speaker comparison, deriving solutions for model training
and Bayesian scoring. Discriminative training of hyperparameters is
discussed in Sec. 3. Sec. 4 presents experimental results for speaker
recognition, and conclusions are provided in Sec. 5.

2. BAYESIAN SPEAKER COMPARISON OF I-VECTORS

In this section, we formulate the fully Bayesian speaker comparison
problem, and present solutions to model training and scoring.

2.1. Statistical Framework

In this study, we assume the Gaussian additive noise model, as in [4].
Speakers are normally distributed with mean θ and across-class co-
variance Φs

p(µ) = N (µ;θ,Φs). (1)

Observed i-vectors are degraded by an additive channel component
with within-class covariance Φc, leading to the marginal distribution

p(wt) = N (wt;θ,Φs + Φc). (2)

In the Bayesian speaker comparison framework, an enroll-
ment set of i-vectors from a known speaker is given as D =
{w1, . . . ,wN}, where wi ∈ RK is the ith i-vector provided for the
known speaker. Conditioned on the model mean, the elements of D
are assumed i.i.d., leading to the conditional distribution

p(D|µ) =

NY
i=1

p(wi|µ) =

NY
i=1

N (wi;µ,Φc). (3)

The goal of the speaker comparison problem is to determine whether
a test i-vector wt was produced by the given speaker. The possible
hypotheses are

H0 : D and wt are produced by different speakers
H1 : D and wt are produced by the same speaker.

Using a Bayesian approach, this problem reduces to determining the
log-likelihood ratio

L(wt|D) = log
p (wt|D,H1)

p (wt|D,H0)
, (4)
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which can be solved as

L(wt|D) = log

R
p(D|µ)p(wt|µ)p(µ)∂µ

p(D)p(wt)
. (5)

Equivalently, using Bayes’ rule, the LLR becomes [5]

L(wt|D) = log

R
p (wt|µ) p (µ|D) ∂µ

p (wt)
. (6)

When expressed in this form, the speaker comparison LLR offers
valuable intuition. The term p (µ|D) can be interpreted as a training
step, wherein we obtain the distribution of the speaker model mean
conditioned on the available data set. The term p (wt|µ) can then be
interpreted as testing, where the test cut is scored against the model
mean. Finally, the denominator, p (wt), represents the evaluation of
a random speaker in a random channel.

2.2. Model Training

Model training consists of fitting a parametric model of the known
speaker mean to the training set D, and determining p (µ|D). The
posterior distribution is given by

p (µ|D) =
p (D|µ) p (µ)R
p (D|µ) p (µ) ∂µ

∝ (D|µ) p (µ) . (7)

Applying (1)-(3) leads to

p (µ|D) ∝
NY
i=1

p (wi|µ) p (µ) (8)

∝ exp

 
−1

2

"
NX
i=1

(µ− µD)T Φ−1
D (µ− µD)

#!
where

ΦD =
1

N
Φs

„
Φs +

1

N
Φc

«−1

Φc, (9)

and

µD =
1

N
Φs

„
Φs +

1

N
Φc

«−1 NX
i=1

wi (10)

+
1

N
Φc

„
Φs +

1

N
Φc

«−1

θ.

Since p (µ|D) is a valid distribution, and must integrate to unity, it
can be concluded to be normally distributed as

p (µ|D) = N (µ;µD,ΦD) . (11)

Here, µD represents the mean of the conditional distribution
p (µ|D), and ΦD represents the uncertainty present when esti-
mating µ from the available data in D.

2.3. Bayesian Scoring

Once the posterior distribution of model mean µ is obtained,
Bayesian scoring reduces to determining the LLR as in (6). The
integral in the numerator of (6) can be interpreted as the sum of two
independent normally distributed random variables, which itself is a
normally distributed random variableZ

p (wt|µ) p (µ|D) ∂µ = N (wt;µD,Φc + ΦD) (12)

so that

L(wt|D) = log
N (wt;µD,Φc + ΦD)

N (wt;θ,Φs + Φc)
(13)

Thus, the general case LLR can be expressed as the ratio of two
Gaussian distributions.

For the single-cut training case, i.e. N = 1, this solution is
mathematically equivalent to probabilistic linear discriminant analy-
sis (PLDA) discussed in [2] and [3]. This can be shown by express-
ing the within-class covariance in (13) in terms of the total variabil-
ity covariance, i.e. Φc = Φt − Φs, expanding the Gaussian ex-
pressions, and applying the matrix inversion lemma appropriately.
For multiple enrollment cuts, [2] and [3] derive the PLDA solution
by stacking i-vectors and covariance matrices, thereby requiring the
analytic inversion of an (N + 1) × (N + 1) block matrix. This in-
creases complexity and memory requirements with increasing N .

By contrast, the proposed solution in (13) has the same form re-
gardless of the number of enrollment cuts. Note also that the numer-
ator of this expression can be viewed as an application of Bayesian
parameter estimation for Gaussian distributions as discussed in [5].

3. DISCRIMINATIVE TRAINING OF
HYPERPARAMETERS

In Sec. 2, a generative model is used to derive the solution to
Bayesian speaker comparison. In this section, we present discrim-
inative training of model hyperparameters to better differentiate
between hypotheses H0 and H1. Specifically, we wish to train the
across-class mean, θ, along with the across-class and within-class
covariance matrices, Φs and Φc.

3.1. Total Cross Entropy

As the objective function, we use the total cross entropy (TCE) be-
tween output LLRs and the answer key, defined as [6]

TCE =
P (H0)

|X0|
X

wt∈X0

log
“
1 + eγ+L(wt|D)

”
(14)

+
P (H1)

|X1|
X

wt∈X1

log
“
1 + e−γ−L(wt|D)

”
,

whereXi represents the set of trials corresponding to hypothesisHi,
|Xi| denotes the cardinality of Xi, and γ is the log-ratio of priors,
γ = log P (H1)

P (H0)
. Note that the use of priors in (14) allows the TCE

to emphasize a specific operating point.

3.2. Evaluation of Gradients

To numerically optimize the objective function, we rely on the gra-
dient descent method presented in [7] for maximizing mutual infor-
mation. This algorithm requires the evaluation of the gradient of the
TCE with respect to the hyperparameters θ, Φs, and Φc. The gener-
alized gradient of TCE with respect to some vector ψ can be shown
to be

∂TCE

∂ψ
=− P (H0)

|X0|
X

wt∈X0

P (H1|wt)
∂L(wt|D)

∂ψ
(15)

− P (H1)

|X1|
X

wt∈X1

P (H0|wt)
∂L(wt|D)

∂ψ
.

7660



However, determining the gradient of the general case LLR, as given
in (13), is mathematically difficult since µD and ΦD are functions
of the hyperparameters which we wish to train. Instead, we propose
to approximate the exact gradient by assuming µD and ΦD to be
independent of θ, Φs, and Φc. The model parameters µD and ΦD
can then be re-estimated as a function of the updated hyperparame-
ters after each optimization iteration. In this section we derive TCE
gradients under this assumption.

Using (13), the gradient of the general case LLR with respect to
the across-class mean can be approximated as

∂L(wt|D)

∂θ
= (Φs + Φc)

−1 (wt − θ) . (16)

When optimizing the objective function with respect to Φs and Φc,
constraints must be applied to guarantee that the updated covariance
matrices are symmetric and positive-definite. We accomplish this
by updating only the corresponding eigenvalues. Applying eigende-
compositions to Φs and Φc reveals

Φc = UΛUT =

KX
l=1

λlulu
T
l , (17)

Φs = VΣVT =

KX
l=1

σlvlv
T
l ,

where U and V are orthonormal bases with basis vectors ul and
vl, respectively, and Λ and Σ are diagonal matrices comprised of
the eigenvalues λl and σl, respectively. Using (13) and the matrix
chain rule [8], the derivative of the LLR with respect to a within-
class covariance eigenvalue can be derived as

∂L(wt|D)

∂λl
=− ∂/∂λl |ΦD + Φc|

2 |ΦD + Φc|
+
∂/∂λl |Φs + Φc|

2 |Φs + Φc|
(18)

+
1

2
Tr
˘
(ΦD + Φc)

−1 (wt − µD)

× (wt − µD)T (ΦD + Φc)
−1 ulu

T
l

o
− 1

2
Tr
˘
(ΦD + Φc)

−1 (wt − θ)

× (wt − θ)T (ΦD + Φc)
−1 ulu

T
l

o
=− 1

2
uTl (ΦD + Φc)

−1 ul

+
1

2
uTl (Φs + Φc)

−1 ul

+
1

2

“
uTl (ΦD + Φc)

−1 (wt − µD)
”2

− 1

2

“
uTl (Φs + Φc)

−1 (wt − θ)
”2

.

where the second step uses the cyclic property of matrix traces. Sim-
ilarly, the derivative of the LLR with respect to an across-class co-
variance eigenvalue becomes

∂L(wt|D)

∂σl
=

1

2
vTl (Φs + Φc)

−1 vl (19)

− 1

2

“
vTl (Φs + Φc)

−1 (wt − θ)
”2

.

To avoid over-fitting to development data, the optimization of
Φs and Φc can be further constrained by only updating matrix scal-

ings. That is, the identities from (17) can be generalized as

Φc = αcUΛUT = αc

KX
l=1

λlulu
T
l , (20)

Φs = αsVΣVT = αs

KX
l=1

σlvlv
T
l ,

so that only the scaling factors αc and αs are updated. The derivative
of the LLR with respect to these scaling factors are derived similarly
to (18) and (19) as

∂L(wt|D)

∂αc
=

KX
l=1

λl
∂L(wt|D)

∂λl
(21)

and

∂L(wt|D)

∂αs
=

KX
l=1

σl
∂L(wt|D)

∂σl
(22)

4. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed meth-
ods on NIST SRE 2010 extended evaluation tasks. The baseline
system uses 600-dimensional i-vectors, with a further LDA dimen-
sion reduction to 200. Results are included for i-vector length-
normalization, since it has been widely shown to provide perfor-
mance improvements for speaker recognition [2]. However, since
statistical modeling of i-vectors can be considered more straight-
forward without length normalization, results are also reported
without this processing step. The background model is trained using
Switchboard II as well as SRE telephone data from 2004, 2005,
and 2006, and was based on 39-dimensional telephone-bandwidth
cepstral features including deltas, with feature mean and variance
normalization. Across-class and within-class covariance matrices
are estimated from sample covariance matrices, using the same data.

Table 1 provides speaker recognition results for SRE 2010 ex-
tended evaluation single-cut enrollment telephone data. Results are
reported in terms of equal error rate (EER), and the two minimum
decision cost function (DCF) scores defined by [9] and [10]. The
minimum DCF score from [10], referred to as minDCF, is normal-
ized by 103, whereas the minimum DCF score from [9], referred
to as oldDCF, is normalized by 10. Separate results are provided
for male and female speakers, as well as for pooled scores. As dis-
cussed in Sec. 2.3, the PLDA baseline is mathematically equivalent
to the proposed I-BSC scoring method for the single-cut enrollment
case, and is therefore not included. Results are provided for I-BSC
with discriminative training (DT) of the across-class mean, as well
as the across-class and within-class covariance matrices. To avoid
overfitting during training, covariance matrix updates included only
scaling factors.

It can be observed in Table 1 that discriminative training of sys-
tem hyperparameters provides significant improvements in speaker
recognition for the case of i-vector length normalization, yielding
approximately 10% relative improvement in EER. The effect of dis-
criminative training is more apparent without length normalization,
providing 45% relative improvement in EER. Furthermore, the use
of DT seems to substantially reduce the performance gap between
i-vector speaker recognition with and without length normalization.

Table 2 provides speaker recognition results for the multi-cut
enrollment task. Results are provided for I-BSC scoring, with and
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Male Set Female Set Pooled Set
Method EER (%) minDCF oldDCF EER (%) minDCF oldDCF EER (%) minDCF oldDCF

With Length Normalization
I-BSC 2.08 0.380 0.099 3.05 0.485 0.148 2.67 0.495 0.133
I-BSC + DT 1.84 0.344 0.092 2.74 0.477 0.140 2.36 0.473 0.121

Without Length Normalization
I-BSC 5.14 0.526 0.230 5.37 0.554 0.223 5.24 0.541 0.228
I-BSC + DT 2.66 0.341 0.113 3.05 0.607 0.152 2.86 0.481 0.066

Table 1. Speaker Recognition Results for Single-Cut Enrollment Data

Male Set Female Set Pooled Set
Method EER (%) minDCF oldDCF EER (%) minDCF oldDCF EER (%) minDCF oldDCF

With Length Normalization
Average PLDA 0.48 0.121 0.029 1.49 0.218 0.048 1.12 0.193 0.042
I-BSC 0.48 0.156 0.036 1.86 0.256 0.068 1.36 0.252 0.057
I-BSC + DT 0.48 0.144 0.029 1.72 0.229 0.047 1.10 0.195 0.042

Without Length Normalization
Average PLDA 2.86 0.277 0.092 2.59 0.258 0.100 2.71 0.282 0.098
I-BSC 3.33 0.375 0.113 3.45 0.324 0.135 3.39 0.346 0.126
I-BSC + DT 0.57 0.164 0.030 1.29 0.297 0.045 0.90 0.246 0.039

Table 2. Speaker Recognition Results for Multi-Cut Enrollment Data

without discriminative training of hyperparameters. It can be ob-
served that DT provides significant performance improvements, es-
pecially when i-vector length normalization is not utilized.

It should be noted that the SRE10 multi-cut enrollment task is
not completely consistent with the statistical framework assumed in
this paper, since all 8 enrollment cuts for each speaker model are
recorded from the same handset. Channel components can therefore
not be assumed to be independently drawn according to a normal
distribution with covariance Φc, so that (3) becomes invalid. For the
case of multi-cut enrollment, PLDA is commonly implemented by
averaging enrollment i-vectors, and is provided as a baseline. Table
2 shows I-BSC scoring to yield a performance degradation relative
to the approximated PLDA baseline. This is most likely due to the
previously discussed mismatch in statistical assumptions. However,
the combination of I-BSC scoring with discriminative hyperparame-
ter training overcomes this degradation for the pooled set case. Note
that the use of enrollment cuts from identical handsets may not be
realistic in many applications. Instead, I-BSC can be expected to
perform well when enrollment cuts are sampled from various chan-
nels.

We note that [3] discriminatively trained the PLDA hyperparam-
eters for the single-cut enrollment case using the same cross entropy
metric, and reported similar gains as in Table 1. The solution pre-
sented here is more general since it includes the multiple cut en-
rollment case, and it also maintains the Gaussian form of the final
solution.

5. CONCLUSIONS

In this paper, we have presented fully Bayesian speaker comparison
with i-vectors. We derived the speaker comparison log-likelihood
ratio, along with solutions for model training and Bayesian scoring.
The framework is easily adaptable to the number of enrollment cuts
available. Additionally, we have presented discriminative training of
these model hyperparameters. When applied to speaker recognition,
experiments on various NIST SRE 2010 extended evaluation tasks

have shown the proposed methods to provide significant improve-
ments in performance.
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