
LATTICE MLLR BASED M-VECTOR SYSTEM FOR SPEAKER VERIFICATION

A. K. Sarkar1, C. Barras1 and V. B. Le2
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ABSTRACT

The recently introduced m-vector approach uses Maximum Likeli-
hood Linear Regression (MLLR) super-vectors for speaker verifi-
cation, where MLLR super-vectors are estimated with respect to a
Universal Background Model (UBM) without any transcription of
speech segments and speaker m-vectors are obtained by uniform
segmentation of their MLLR super-vectors. Hence, this approach
does not exploit the phonetic content of the speech segments. In this
paper, we propose the integration of an Automatic Speech Recog-
nition (ASR) based multi-class MLLR transformation into the m-
vector system. We consider two variants, with MLLR transforma-
tions computed either on the 1-best (hypothesis) or on the lattice
word transcriptions. The former case is able to account for the risk
of ASR transcription errors. We show that the proposed systems
outperform the conventional method over various tasks of the NIST
SRE 2008 core condition.
Index Terms: m-Vector, Lattice MLLR, MLLR Super-Vector, Ses-
sion Variability Compensation, Speaker Verification

1. INTRODUCTION

Maximum Likelihood Linear Regression (MLLR) super-vectors
are known to carry speaker related information. They were first
introduced in speaker verification by Stolcke et al. [1], followed
by several variants [2, 3]. In these systems, MLLR super-vectors
are used for speaker modeling in a Support Vector Machine (SVM)
framework, and an Automatic Speech Recognition (ASR) front-end
is generally used for estimating several MLLR transformations for a
given speaker speech segment with respect to pre-defined phonetic
classes. MLLR transformations are then concatenated to form a
MLLR super-vector.

Recently, a new way of representing speakers with MLLR super-
vectors was proposed [4, 5, 6]. In [5], an eigen voice anchor mod-
eling was proposed for speaker identification, where speakers are
characterized by Speaker Characterization Vectors (SCVs). SCVs
are estimated by projecting the speakers MLLR super-vector on an
eigen voice space. The eigen voice space is generated by singu-
lar value decomposition of MLLR super-vectors pooled from many
speakers. During the identification phase, SCV of the test utterance
is scored against the known speakers with a cosine similarity mea-
sure. The proposed method was shown to be computationally very
efficient and to perform significantly better than the anchor model-
ing techniques described in the literature [7, 8]. In [4], a system
called m-vector was proposed, where speakers are represented by
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a uniform segmentation of their MLLR super-vector using an over-
lapped sliding window. Each segment of the MLLR super-vector
is called an m-vector. Hence, each speaker is characterized by a
number of m-vectors depending on the window size. During test
phase, m-vectors of the test utterance are scored against the claimant
specific m-vectors. Before scoring, m-vectors are conditioned for
session variability compensation. It was shown in [4] that m-vector
system is analogous to i-vector [9] based speaker verification system
and showed promising performance. It is also able to capture more
speaker related information available in the MLLR super-vector and
hence shows significantly better performance compared to the sys-
tem which uses full MLLR super-vectors to characterize the speakers
(for details see [4]). To the best of our knowledge, these were the first
approaches with MLLR super-vectors trying to depart from the con-
ventional SVM modeling. However, they use Universal Background
Model (UBM) for estimating the MLLR transformation without any
phonetic knowledge of the speech segment.

In this paper, we propose an Automatic Speech Recognition
(ASR) transcription based (phonetic) multi-class MLLR super-
vector for m-vector in speaker verification. More precisely, ASR
is used as a front-end for getting the transcriptions of the speech
segments. Speech transcriptions are then used to compute phonetic
class wise MLLR transformation with respect to Speaker Indepen-
dent (SI) Hidden Markov Models (HMM). We consider two ways
of using these speech transcriptions in the MLLR transformation.
The first one is the 1-best hypothesis, which is conventionally used
in ASR for MLLR transformation [10]. The other one is based on
lattice word transcriptions [11], which are able to account for the
risk of transcription errors. This results in the proposition of two m-
vector systems called ASR 1-best and ASR-Lattice, respectively. The
main difference with the conventional system [4] are that : (i) MLLR
super-vectors are extracted using phonological knowledge (i.e. ASR
speech transcriptions) using 1-best and lattice transcriptions in con-
trast to [4]; (ii) multi-class MLLR transformations are used with re-
spect to phonetic classes in contrast to a single, global class in [4].
The experimental results show that the proposed system performs
significantly better than conventional m-vector system, for various
tasks of NIST SRE 2008 core condition.

The paper is organized as follows: Section 2 and 3 describe
the conventional 1-best hypothesis and lattice based MLLR trans-
formation, respectively. m-vector concept is described in Section 4.
Section 5 describes the proposed system. Section 7 describe ses-
sion variability compensation and scoring method. Test phase and
baseline system are described in Section 8 & 6, respectively. Exper-
imental setup is described in Section 9. Results and discussion are
presented in Section 10. Finally, the paper concludes with Section
11.
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2. CONVENTIONAL (1-BEST) MLLR

MLLR [10] is commonly used for speaker adaptation in HMM-
based ASR systems. It estimates an affine transformation with re-
spect to a Speaker Independent (SI) HMM in the Maximum Likeli-
hood (ML) sense for a given speech data as [10]:

θ̂ = arg max
θ
log p(Xr|θ) (1)

where Xr represents the feature vectors of rth speaker. θ̂ denotes
the adapted model parameter of the speaker for a state/tied state, s in
SI model as,

{
µ̂s = Aµs + b; Σ̂s = Σs

}
, where µs and Σs are

the Gaussian mean and covariance matrix of sth state in SI (HMM)
model, respectively. (A, b) is called the MLLR transformation.

3. LATTICE MLLR

Automatic transcriptions of telephone conversations present typical
word error rates of 20−30%, so the conventional MLLR transforma-
tion using Eq.(1) with the 1-best hypothesis often misses the correct
acoustic model. To account for the transcription errors, lattice-based
MLLR transforms [12, 13] are estimated using the word-lattice out-
put of an ASR system obtained in a first-pass decoding, converted
into a model-level graph using the pronunciation variants in the lex-
icon. MLLR transformation for a given speech data of rth speaker
is estimated as:

θ̂ = arg max
θ

∑
srεS

p(sr|Xr, θ) log p(Xr, sr|θ) (2)

where p(sr|Xr, θ) is the probability of aligning the rth speaker
training data, Xr with respect to state sequence sr using SI (HMM)
model, θ. S indicates all possible alignment state sequences of Xr
with respect to the SI model. In the conventional approach in Eq.(1),
p(sr|Xr, θ) is set to 1 for the 1-best hypothesis (i.e. 1-best state
sequence) and 0 for others. Details about the use of lattice MLLR
approach for speaker verification can be found in [11].

4. M-VECTOR TECHNIQUE

Recently, speaker verification using the m-vector technique has been
introduced in [4]. In this approach, speakers are characterized by
their m-vectors which are extracted from their MLLR super-vectors
by uniform segmentation using overlapped sliding windows. Fig.1
graphically illustrates MLLR super-vector estimation of the rth

speaker using his/her training data with respect to a SI HMM or
UBM model.
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Fig. 1. MLLR super-vector extraction from MLLR transformation of
the rth speaker using his/her training data with respect to a speaker
independent HMM.
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Fig. 2. m-vector extraction for the rth speaker from his/her MLLR
super-vector using an overlapped sliding window of 500 elements
with 50% overlap of its adjacent m-vectors.

As per [4], two m-vectors extraction are considered,
Full: speakers are represented by their full MLLR super-vectors [5].
Overlapped: MLLR super-vector is uniformly segmented using an
overlapped sliding window, as illustrated on Fig. 2. In this case, a
speaker is represented by several m-vectors which are processed sep-
arately and hence constitute several sub-systems. The size of win-
dow and overlap control the number of m-vectors to be derived from
a MLLR super-vector. When the size of the MLLR super-vector is
not a multiple of the window size, an additional m-vector is extracted
by placing the window at the end point of the super-vector, so as to
cover all elements of the super-vector.

During the test phase, m-vectors of the test utterance are scored
against the claimant specific m-vectors. Before scoring, m-vectors
are conditioned for session variability compensation similarly to i-
vectors. Linear Discriminant Analysis (LDA) [14] is applied on the
m-vectors (before conditioning) to discriminant the speakers. In the
overlapped case, each sub-system has its own LDA projection ma-
trix. LDA is implemented using a number of example from 890
non-target speakers.

5. PROPOSED SYSTEMS

5.1. ASR 1-best m-vector system

In this system, MLLR transformations of a speech segment is cal-
culated using Eq.(1) i.e. 1 best hypothesis. We use 42 dimensional
feature vectors and two phonetic classes (vowels and consonants)
and obtain a 42 × 42 dimensional MLLR transformation for each
phonetic class (the bias b is discarded since it does not provide sig-
nificant gain in our setup). Totally, we get a (2× 42× 42) = 3528
dimensional MLLR super-vector. During training, target speakers
are represented by their m-vectors extracted from their MLLR super-
vectors.

5.2. ASR-Lattice m-vector system

This system is similar to ASR 1-best m-vector system. The only dif-
ference is that it uses lattice MLLR concept for MLLR transforma-
tions as Eq.(2).

6. BASELINE SYSTEM

A single class UBM based m-vector system is considered as the
baseline system [4]. In this system, a global MLLR transformation
is calculated with respect to the UBM without any speech transcrip-
tions of the speech segments. It is similar to Eq.(1), where the UBM
is considered as the SI model. This results in a 1764 dimensional
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MLLR super-vector (for 42 dimensional feature vectors). Target
speakers are then represented by the m-vectors extracted from their
MLLR super-vectors. Details about the system can be found in [4].

7. SESSION VARIABILITY COMPENSATION AND
SCORING

For session variability compensation, we apply the Eigen Factor Ra-
dial (EFR) technique recently proposed [15] on m-vectors. EFR it-
eratively normalize the length of the i-vectors, w as Eq.(3) to handle
the session variability.

ŵ ← V − 1
2 (w − w)√

(w − w)tV −1(w − w)
(3)

where V and w indicate the covariance matrix and mean vector of
the training i-vectors, respectively in successive iteration. During
test, the score between the two conditioned i-vectors (i.e. ŵ1, ŵ2)
are calculated using the Mahalanobis distance measure,

score(ŵ1, ŵ2) = (ŵ1 − ŵ2)tΩ−1(ŵ1 − ŵ2) (4)

where Ω is the within-class covariance matrix calculated using de-
velopment data set.

Several other session variability compensation techniques can be
found in literature, namely LDA [14], Within Class Covariance Nor-
malization (WCCN) [16] and Probabilistic (P)-LDA [17, 18] etc.,
but it was shown in [15] that EFR performs better than conventional
LDA + WCCN method. We thus use the EFR algorithm for condi-
tioning the m-vectors and handling the session variability, and Maha-
lanobis distance measure for scoring. Two iterations are considered
during conditioning for all systems presented in the paper.

8. TEST PHASE

m-vectors are extracted from the test utterance using their respective
systems and projected on the particular LDA space. Finally, LDA
projected m-vectors are conditioned using the EFR algorithm and
scored against the claimant specific m-vector obtained during train-
ing phase. In case of the overlapped method, scores of the different
sub-systems are fused for a particular LDA dimension across all sub-
systems. For fusion, equal weights are given to all sub-systems as,

fuse score =
1

Nsubsys

Nsubsys∑
i=1

score(m̃r
i , m̃

test
i ) (5)

where m̃r
i and m̃test

i are the conditioned m-vectors of claimant, r
and test utterance for the ith subsystem, respectively. score(., .)
indicates the scoring function between the two m-vectors.

9. EXPERIMENTAL SETUP

All experiments are performed on NIST SRE 2008 core condition
(male speakers) as per plan [19]. There are 1270 speech utterances
for training 1270 target models. Each utterance is approximatively
5 minutes long with 2.5 minutes of speech in average.

For spectral analysis, 42 dimensional vectors including 12 Mel-
PLP feature, log-energy and F0 along with their first- and second-
order derivatives are extracted from the speech signal each 10 ms
using a 30 seconds Hamming window over bandwidth 0-3800Hz.
Voice activity detection is applied as a pre-processing step to discard

less energized or silent frames. Finally, detected speech segments
are normalized to zero mean and unit variance at the utterance level.

The Large Vocabulary Continuous Speech Recognition
(LVCSR) system used MLLR transforms estimation is similar to the
LIMSI RT’04 LVCSR system [20]. The acoustic models are trained
on about 2000 hours of manually transcribed Conversational Tele-
phone Speech (CTS) data using the PLP+F0 features concatenated
with additional MLP features [21]. The model sets cover about 48k
phone contexts, with 11.5k tied states and 32 Gaussians per state.
Silence is modeled by a single state with 1024 Gaussians. Two
manually derived phonetic classes: vowels and consonants are used
for MLLR transformations, estimated on the PLP+F0 features only.
Audio segments aligned with the silence model after the decoding
are not considered for the MLLR transformation relying on the ASR
transcriptions, but are kept for the baseline system.

A male UBM of 512 mixture component Gaussian Mixture
Models (GMMs) having diagonal covariance matrix, is trained us-
ing data from NIST 2004 SRE. All systems use a single iteration for
MLLR transformation. LDA and EFR algorithm are implemented
using 890 non-target data from NIST 2004-2005, Switchboard II
part 1, 2 & 3, Switchboard cellular part 1 & 2, with about 15 ses-
sions per speaker. It gives totally 12399 utterances i.e. 12399 MLLR
super-vectors.

10. RESULTS AND DISCUSSION

Table 1 compares the speaker verification performance of the pro-
posed systems with the baseline system on NIST 2008 SRE core
condition over various tasks. Each task is associated with different
condition (e.g. telephone, interview, microphone type etc) of target
speaker training and testing (e.g. Det 1: microphone-microphone,
Det 7: telephone-telephone etc). The performance of the overlapped
m-vector systems are shown for m-vector size of 500 elements which
correspond to size of the sliding window and gives the best results for
all systems in our experiments. For fusion, equal weights are given
to all systems. From table, we can make the following observations:

• Overlap method shows better results compared to the full
in all respective systems with LDA in terms of EER and
MinDCF. This indicates that overlapped method is able
to capture more speaker relevant information from MLLR
super-vector than full.

• Fusion of overlap system with full further improves the
speaker verification performance in all respective systems.
This indicates that full system also contains the comple-
mentary information (which is not covered by m-vectors i.e.
presents on full MLLR super-vector) for the overlap system.

• The proposed ASR based m-vector systems significantly
show better performance than baseline system in terms of
EER and MinDCF value. Lattice based system shows again
lower EER and MinDCF compared to 1-best. This also re-
flects its (lattice) accountability of erroneous in speech tran-
scription for MLLR transformation over the 1-best hypothesis
method.

Fig.3 compares the Detection Error Tradeoff (DET) plots of the
proposed systems with the baseline over various tasks on NIST 2008
SRE core condition. From Fig.3, we can observe that the proposed
systems perform consistently better than the baseline system over a
large region of the DET curve.
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Table 1. Comparison of performance of the proposed systems with baseline system on NIST 2008 SRE core condition over different tasks.

System m-vector LDA DET task: (%) EER (MinDCF)
extraction method dim. Proj. dim. 1 3 4 5 6 7
(A1) Full 1764 50 15.00 15.54 15.55 10.53 9.32 6.67

Baseline (0.0614) (0.0641) (0.0612) (0.0467) (0.0485) (0.0362)

(A2) Overlapped 500 50 14.92 15.34 13.00 9.55 7.70 5.74
(0.0588) (0.0611) (0.0514) (0.0380) (0.0378) (0.0271)

Fusion (A1,A2) - - 13.95 14.37 12.63 8.55 7.70 5.51
(0.0557) (0.0579) (0.0491) (0.0353) (0.0382) (0.0259)

(B1) Full 3528 50 12.86 13.30 10.36 8.45 6.34 3.89
Proposed-ASR 1 best (0.0492) (0.0510) (0.0451) (0.0337) (0.0395) (0.0214)

(B2) Overlapped 500 50 12.51 12.88 9.61 7.69 5.89 3.18
(0.0480) (0.0498) (0.0417) (0.0293) (0.0354) (0.0160)

Fusion(B1,B2) - - 11.82 12.09 8.77 7.34 5.89 3.13
(0.0445) (0.0464) (0.0407) (0.0274) (0.0346) (0.0144)

(C1) Full 3528 50 11.98 12.46 9.39 8.20 7.05 3.42
Proposed- ASR Lattice (0.0470) (0.0487) (0.0410) (0.0322) (0.0379) (0.0180)

(C2) Overlapped 500 50 11.92 12.25 8.52 7.09 5.74 2.97
(0.0455) (0.0471) (0.0392) (0.0260) (0.0351) (0.0162)

Fusion(C1,C2) - - 11.21 11.52 8.07 6.75 5.54 2.88
(0.0426) (0.0439) (0.0382) (0.0259) (0.0345) (0.0147)
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Fig. 3. Comparison of proposed systems (fusion) with baseline sys-
tem (fusion) on NIST 2008 SRE core condition over different tasks.

11. CONCLUSION

We proposed to combine m-vector with lattice and 1-best
transcription-based MLLR for speaker verification, where speakers
are represented by m-vectors which are obtained from their MLLR
super-vectors by uniform segmentation. The proposed method
shows significantly better performance than the conventional UBM
based m-vector system. Lattice based system accounts for the risk
of ASR transcription errors (generally 20 − 30% word error rate)
and hence also shows better performance than 1-best conventional
method, on various tasks on NIST SRE 2008 core condition.
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