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ABSTRACT

The duration of speech segments has traditionally been controlled
in the NIST speaker recognition evaluations so that researchers
working in this framework have been relieved of the responsibility
of dealing with the duration variability that arises in practical ap-
plications. The fixed dimensional i-vector representation of speech
utterances is ideal for working under such controlled conditions
and ignoring the fact that i-vectors extracted from short utterances
are less reliable than those extracted from long utterances leads to a
very simple formulation of the speaker recognition problem. How-
ever a more realistic approach seems to be needed to handle dura-
tion variability properly. In this paper, we show how to quantify
the uncertainty associated with the i-vector extraction process and
propagate it into a PLDA classifier. We evaluated this approach
using test sets derived from the NIST 2010 core and extended core
conditions by randomly truncating the utterances in the female,
telephone speech trials so that the durations of all enrollment and
test utterances lay in the range 3–60 seconds and we found that it
led to substantial improvements in accuracy. Although the like-
lihood ratio computation for speaker verification is more compu-
tationally expensive than in the standard i-vector/PLDA classifier,
it is still quite modest as it reduces to computing the probability
density functions of two full covariance Gaussians (irrespective of
the number of the number of utterances used to enroll a speaker).

Index terms speaker recognition, i-vectors, PLDA

1. INTRODUCTION

The well known i-vector representation of speech segments has the
convenient property that it maps segments of arbitrary duration to
vectors of fixed dimension [1]. At the cost of ignoring the time
dimension altogether, this representation has enabled the speaker
recognition problem to be cast as an ordinary biometric pattern
recognition problem like face recognition or fingerprint recogni-
tion. Numerous classifiers, all based on this simplified formulation
of the problem, have been developed in recent years and shown to
perform very well on the NIST speaker recognition evaluation sets
[2, 3, 4, 5, 6, 7, 8, 9, 10].

However the NIST evaluation protocols simplified the speaker
recognition problem in an analogous way by controlling for the
durations of enrollment and test utterances in all evaluation con-
ditions. As a result, there is little evidence available that i-vector
based methods are capable of coping with the variability in utter-
ance durations encountered in practical applications. Unlike pre-
vious NIST evaluations, this issue is addressed in the 2012 eval-
uation protocol where both the number of recordings available to
enroll a target speaker and the durations of test utterances are al-
lowed to vary.

In the state of the art i-vector/PLDA approach to the speaker
recognition problem, an i-vector extracted from a very short ut-
terance is treated as being just as reliable as an i-vector extracted
from a long utterance. In this paper we propose to deal with the
problem of duration variability by remedying this clearly unsatis-
factory assumption.

Recall that the i-vector associated with an utterance is usually
understood to be a point estimate of the hidden variables in an
eigenvoice probability model [1, 11, 12]. We will adopt a slightly
different perspective and view the i-vector as a random vector in-
stead.

The i-vector point estimate is calculated by evaluating the pos-
terior expectation of the hidden variables in the model conditioned
on the Baum-Welch statistics extracted from the utterance. This
posterior calculation provides a posterior covariance matrix as well
as a posterior expectation. The posterior covariance matrix can be
interpreted as quantifying the reliability of the point estimate. (It
is apparent from equation (1) in [12] that the shorter the utterance,
the larger this covariance matrix will be and hence the greater the
uncertainty in estimating the i-vector.) Our purpose is to show
how to propagate this uncertainty into the PLDA model for speaker
recognition.

This uncertainty propagation can be carried out for both the
Gaussian and heavy-tailed versions of PLDA [2, 3]. It is well
known that i-vectors can be approximately Gaussianized by length
normalization [13] so that the performance of Gaussian PLDA
(with length normalization) is similar to that of heavy-tailed PLDA
(without length normalization). Thus Gaussian PLDA is preferred
in practice. However it is not obvious how to apply “length nor-
malization” to posterior covariance matrices and this issue does
not arise in the heavy-tailed version of PLDA. Thus we had to look
into question of which version of PLDA could better accommodate
posterior covariance matrices supplied by an i-vector extractor. It
turned out that Gaussian PLDA yielded the best results so we re-
strict our attention to Gaussian PLDA in the expository portion of
the paper.

2. UNCERTAINTY PROPAGATION

Given a speaker and a collection of i-vectors i1, . . . , iR (one for
each recording of the speaker), standard Gaussian PLDA assumes
that the i-vectors are distributed according to

ir = m+ V y + εr (1)

where m is the population mean, y has a standard normal prior
and the residual εr is normally distributed with mean 0 and (full)
covariance matrix Σ. Let Cr be the posterior covariance matrix
associated with ir (given by equation (1) in [12]) and let UrU

∗
r

be its Cholesky decomposition, so that the uncertainty associated
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with i-vector point estimate can be expressed in the from Urxr

where xr is a hidden random vector having a standard normal dis-
tribution. In this paper we modify (1) by adding this term on the
right hand side:

ir = m+Urxr + V y + εr. (2)

Thus the idea is to use the channel factors in [2, 3] to model the ob-
servation noise in the i-vector extraction process.1 (An alternative
formulation would absorb the termUrxr into the residual εr . We
don’t take this approach since it would complicate the estimation
of Σ in PLDA training.)

2.1. The posterior distribution of the hidden variables

Let i denote the column vector obtained by stacking the i-vectors
i1, . . . , iR and let X be the column vector obtained by stacking
the hidden variables x1, . . . ,xR,y. The principal computation
that needs to be done in order to implement the PLDA model is to
calculate the posterior distribution ofX|i.

For r = 1, . . . , R, letF r denote the first order statistic ir−m
and let F be the column vector obtained by stacking F 1, . . . ,FR.
Set

V =

0B@ U1 V
. . .

...
UR V

1CA ,Σ =

0B@ Σ
. . .

Σ

1CA
and let

K = I + V ∗Σ−1V .

Then, as in Theorem 2 of [14] The posteriorX|i is Gaussian with
precision matrixK and mean

K−1V ∗Σ−1F .

We use the notation 〈·〉 to denote expectations calculated with re-
spect to this posterior.

Like V , the matrixK is almost, but not quite, block diagonal.
Regarded as an (R + 1) × (R + 1) block matrix, the non-zero
blocks are given by

Krr = I +U∗rΣ−1Ur

Kr,R+1 = U∗rΣ−1V

KR+1,R+1 = I +RV ∗Σ−1V

for r = 1, . . . , R. An algorithm which takes advantage of this
type of sparsity structure to calculate Cholesky decompositions is
given in Section III-D of [14]. As explained there, this gives an ef-
ficient way of calculating the first and second order posterior mo-
ments needed to implement the model, namely 〈xr〉, 〈y〉, 〈xrx

∗
r〉,

〈yx∗r〉 and 〈xrx
∗
r〉. Also the log evidence lnP (i) (which useful

for debugging and evaluating log likelihood ratios for speaker ver-
ification) is given by

ln
1

(2π)N/2|Σ|1/2
− 1

2
F ∗Σ−1F

− 1

2
ln |K|+ 1

2
〈X〉∗V ∗Σ−1F (3)

1Thanks to Niko Brümmer for making his MATLAB implementation
of [3] available to us. We used this to implement uncertainty propagation
in Gaussian PLDA.

where N is the dimension ofX .
Alternatively, these calculations can be carried out by modi-

fying the algorithms in [3]. Essentially all that is required is to
change the definitions of the matrices J and K in equations (13)
and (14) of that paper (ourKrr andKr,R+1) so as to take account
of the fact that the matrix U varies from one recording to another,
and take the residual covariance matrix (our Σ) to be full rather
than diagonal.

2.2. Maximum likelihood estimation

So far we have only considered the case of a single speaker. In or-
der to estimate the model parameters we need a training set com-
prising multiple speakers. In what follows, for a given training
speaker s, r ranges over all of the recordings of the speaker and
the number of these recordings is denoted by R(s). We assume
that the matrices Ur(s) are given. The obvious way to estimate
the mean i-vector m is by averaging over the training set. So we
concentrate on estimating V and Σ. Setting

εr(s) = F r(s)− V y(s)−Ur(s)xr(s),

the EM auxiliary function for estimating V and Σ is

−R
2

ln |Σ| − 1

2

X
s

R(s)X
r=1

˙
ε∗r(s)Σ

−1εr(s)
¸

where R =
P

s R(s). V is re-estimated by setting the derivative
of the auxiliary function to zero so that

X
s

R(s)X
r=1

〈εr(s)y
∗(s)〉 = 0.

The maximum likelihood estimate for Σ is

Σ =
1

R

X
s

R(s)X
r=1

〈εr(s)ε
∗
r(s)〉

The posterior moments 〈εr(s)y
∗(s)〉 and 〈εr(s)ε

∗
r(s)〉 are evalu-

ated using the methods in Section 2.1.

2.3. Likelihood ratio calculation for speaker verification

Given enrollment i-vectors i1, . . . , iR for a target speaker and a
test i-vector i the likelihood ratio for speaker verification is tradi-
tionally formulated as

P (i1, . . . , iR, i)

P (i1, . . . , iR)P (i)

where each term in this expression is evaluated as in (3) [2]. In the
context of the NIST 2012 speaker recognition evaluation where
R may be very large (up to 64), a more efficient procedure is to
re-write this ratio as

P (i|i1, . . . , iR)

P (i)
(4)

and observe that the predictive distribution P (·|i1, . . . , iR) can be
viewed as another PLDA model whose parameters depend on the
given speaker. Indeed, for a collection of i-vectors i other than
i1, . . . , iR,

P (i|i1, . . . , iR) =

Z
P (i|y)P (y|i1, . . . , iR)dy
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where the posterior P (y|i1, . . . , iR) is a non-standard normal dis-
tribution whose mean mean 〈y〉 and precision matrix P are given
by the methods outlined in Section 2.1; explicitly,

P = KR+1,R+1 −
RX

r=1

K∗r,R+1K
−1
rr Kr,R+1

〈y〉 = P−1
RX

r=1

`
V −UrK

−1
rr Kr,R+1

´∗
Σ−1F r.

The only reason why standard normal priors were required in the
specification of the model (2) is that there is no gain in generality
in permitting non-standard normal priors. In the case at hand, the
speaker-dependent PLDA model can be brought to standard form
by chosing speaker dependent parameters m′ and V ′ in such a
way that if y has a standard normal distribution then the first and
second order moments of the expressionm′+V ′y are consistent
with those of the posterior distribution P (y|i1, . . . , iR). This can
be achieved by setting

m′ = m+ V 〈y〉
V ′ = V T−1

where T is the upper triangular matrix such that T ∗T = P (i.e.
Cholesky decomposition).

Returning to the likelihood ratio (4), it follows that both the
numerator and the denominator can be evaluated using the ex-
pression for the evidence given in (3), once with the speaker-
dependent PLDA model and once with the speaker-independent
PLDA model.

More straightforwardly, it can be observed that the marginal
distribution of a single i-vector under a PLDA model with uncer-
tainty propagation is just a Gaussian so the likelihood ratio can be
expressed as the ratio of two Gaussian pdfs. Also, some savings in
computation can be obtained by noting that, although the numer-
ator in (4) needs to be evaluated once per trial, the denominator
only needs to be evaluated once per test segment. The reader may
find it helpful to do the likelihood ratio calculation in detail and see
how, in the case of a verification trial involving a short enrollment
utterance and a short test utterance, uncertainty propagation can be
expected to produce a likelihood ratio close to 1.

3. EXPERIMENTS

3.1. Evaluation data

We devised an evaluation set by randomly truncating the utterances
in the female, telephone speech portion of the NIST 2010 core con-
dition (det 5) so that the durations (after voice activity detection)
of all enrollment and test utterances lay in the range 3—60 sec-
onds. As performance metrics we used the equal error rate (EER)
and the 2008 and 2010 NIST minimum detection costs (DCF 2008
and DCF 2010). Since the 2010 core condition does not contain
sufficiently many trials to estimate DCF 2010 reliably, we also re-
port results on the extended core condition (truncating enrollment
and test utterances in the same way as for the core condition).

3.2. i-vector/PLDA training

As acoustic features, we used Gaussianized MFCC’s (including
first and second derivatives). We trained a full covariance, gender-
independent UBM with 2048 Gaussians using Mixer data drawn

from the 2004 and 2005 NIST speaker recognition evaluation cor-
pora.

We trained a 600 dimensional, gender-independent i-vector
extractor using the LDC releases of the Switchboard corpora, the
Fisher English corpus and telephone speech data made available
by NIST in 2004 and 2005; in addition, we used microphone data
made available in 2004–2006 and the the interview development
data made available prior to the 2008 speaker recognition evalua-
tion. Because of the need to calculate posterior covariance matri-
ces exactly, we used the method in [11] to train the i-vector extrac-
tor rather than the more recent method [12].

Except for the Fisher corpus, we used the same data for LDA
and PLDA training. We used a 600 × 200 LDA projection ma-
trix L. This acts on pair (i,C) consisting of an i-vector i and a
posterior covariance matrixC by

i → Li

C → LCL∗.

If the issue of length normalization is ignored, the corresponding
matrixU in (2) is obtained by Cholesky decomposition ofLCL∗.
We will return later to the question of how to “length normalize”
covariance matrices.

We took the matrix V in (2) to be of full rank (that is, of
dimension 200× 200). We used uncertainty propagation in PLDA
training as well as at run time (that is, enrollment and verification).

3.3. Results

We began by evaluating standard Gaussian PLDA with length nor-
malization on the core condition with truncated utterances; results
are given in Table 1.

Table 1. Benchmark result on the NIST 2010 core condition with
randomized durations (female det 5) obtained with length normal-
ization but no uncertainty propagation.

EER DCF 2008 DCF 2010
6.8% 0.30 0.69

3.3.1. Scaling the Baum-Welch statistics

Our first priority in experimenting with uncertainty propagation
was to look into the question of how best to quantify the uncer-
tainty associated with the i-vector extraction process.

It is well known that successive acoustic observation vectors
tend to be highly correlated. This is not generally considered to be
an issue for conventional maximum likelihood training of UBMs
but it may be problematic for any type of maximum a posteriori
(MAP) estimation [15], such as the eigenvoice MAP calculation
which is used to calculate point estimates of i-vectors as well as
the corresponding posterior covariance matrices.

A crude way of investigating this issue is to experiment with
scaling the zero and first order Baum-Welch statistics before pre-
senting them to the i-vector extractor. A glance at a spectrogram
suggests that a scale factor in the range 0.2–1.0 would be reason-
able. It is clear from equation (1) in [12] that this sort of scaling
would have a substantial effect on the posterior covariance matri-
ces produced by the i-vector extractor (the smaller the scale factor
the larger the posterior covariance).
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To be consistent, scaling needs to be performed in training
the i-vector extractor as well as at run time. Thus we built three
i-vector extractors using scale factors 1/5, 1/3 and 1 for our first
experiments with uncertainty propagation and we trained a Gaus-
sian PLDA model (2) without length normalization in each case.
Results on the core condition with truncated utterances are sum-
marized in Table 2.

Table 2. Core condition. Uncertainty propagation without length
normalization. Various scalings of the Baum-Welch statistics.

scale factor EER DCF 2008 DCF 2010
1 6.3% 0.32 0.65

1/3 6.3% 0.31 0.55
1/5 6.9% 0.32 0.57

Rather surprisingly, it turns out that the effect of scaling the
Baum-Welch statistics is minor. Since using a scale factor of 1/3
gives a slight edge we used that in all subsequent experiments.

Interestingly the results Table 2 are slightly better than those
in Table 1: uncertainty propagation without length normalization
seems to be more effective than length normalization without un-
certainty propagation.

3.3.2. Length normalization

In applying length normalization with uncertainty propagation we
need to figure out what to do with theU matrices furnished by the
i-vector extractor. A simple expedient when length normalizing

Table 3. Core condition. Uncertainty propagation with different
length normalization methods.

EER DCF 2008 DCF 2010
scalar 6.1% 0.31 0.55

unscented 1 5.9% 0.29 0.58
unscented 2 5.5% 0.27 0.60

an i-vector i is to multiply the corresponding matrix U by 1/‖i‖
(which is equivalent to multiplying the posterior covariance ma-
trix by 1/‖i‖2). As indicated by the results in Table 3 (labeled
“scalar”), this leads to a small improvement in EER relative to the
results in Table 2 (labeled “1/3”).

Table 4. Extended core condition. Uncertainty propagation with
different length normalization methods.

EER DCF 2008 DCF 2010 min Cllr
scalar 6.8% 0.32 0.72 0.23

unscented 2 5.9% 0.28 0.72 0.20

A more standard way of dealing with this type of problem is
to use some type of unscented transform. Suppose we are given a
probability distribution (to wit, an i-vector posterior distribution)
and a non-linear transformation (length normalization). To esti-
mate the moments of the transformed distribution, we can draw a
sample from the original distribution, transform each point in the
sample and then calculate the moments of the transformed sample.
This leads to the results labeled “unscented 1” in Table 3. For the

“unscented 2” variant, we normalized the i-vector in the usual way
and scaled the transformed covariance so that its determinant is the
same as that of the original.

Since there is no clear winner in Table 3, we did a larger exper-
iment using the extended core condition (with utterances truncated
in the same way as for the core condition). Table 4 indicates that
“unscented 2” is the best approach.

3.3.3. Gaussian vs. heavy-tailed PLDA with uncertainty propa-
gation

Comparing the results in Tables 2 and 3 shows that length normal-
ization is effective with uncertainty propagation but the improve-
ment in performance is not as big as we expected. This raises the
question of whether it might be better to avoid it and try using un-
certainty propagation in heavy-tailed PLDA instead. As Table 5
indicates this approach did not prove to be successful.

Table 5. Extended core condition. Gaussian vs. heavy-tailed
PLDA with uncertainty propagation

EER DCF 2008 DCF 2010
Heavy-tailed 7.5% 0.36 0.76

Gaussian 5.9% 0.28 0.72

4. CONCLUSION

The state of the art i-vector/PLDA approach to speaker recognition
was developed by taking a hierarchical generative model of speech
and implementing it in a mathematically incorrect way. The stan-
dard implementation is particularly defective in its handling of ut-
terances of unrestricted duration since it treats all point estimates
of i-vectors as being equally reliable. We have shown how the
method of uncertainty propagation can remedy this defect.

The hierarchical generative model referred to here is a refor-
mulation of JFA [16]. The model generates speech data for mul-
tiple recordings of a given speaker by first drawing a vector of
speaker factors y from the standard normal prior. Next an i-vector
for each recording is generated according to (1) and it is lifted to a
GMM supervector. Finally speech data for each recording is gen-
erated sampling from the corresponding GMM.

Note that a correct implementation of this generative model
would not treat the GMM supervectors for the recordings as be-
ing statistically independent, so that the i-vector extractor and the
PLDA model (1) would need to be tightly integrated (they cannot
be decoupled as in the standard i-vector/PLDA implementation).
Moreover, a correct implementation would use posterior distribu-
tions of the i-vectors rather than point estimates [17, 14]. In this
paper we have sought to fix the latter problem (but not the former)
so as to retain the principal advantage of decoupling, namely that it
enables the application of the length normalization trick. (A heavy
tailed version of JFA might prove to be equally effective but this
would probably be too unwieldy to experiment with.)

On the other hand, we have had to compromise on a secondary
advantage derived from decoupling, namely the extremely fast ev-
idence calculations which the standard i-vector/PLDA implemen-
tation supports. However the computational cost of the evidence
calculation with uncertainty propagation is still quite modest as
it consists of evaluating the probability density function of a full
covariance Gaussian (typically of dimension 100–200).
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