
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS OF I–VECTOR POSTERIOR
DISTRIBUTIONS
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ABSTRACT

The i-vector extraction process is affected by several factors such as
the noise level, the acoustic content of the observed features, and the
duration of the analyzed speech segment. These factors influence
both the i–vector estimate and its uncertainty, represented by the i–
vector posterior covariance. This paper present a new PLDA model
that, unlike the standard one, exploits the intrinsic i–vector uncer-
tainty. Since short segments are known to decrease recognition ac-
curacy, and segment duration is the main factor affecting the i–vector
covariance, we designed a set of experiments aiming at comparing
the standard and the new PLDA models on short speech cuts of vari-
able duration, randomly extracted from the conversations included in
the NIST SRE 2010 female telephone extended core condition. Our
results show that the new model outperforms the standard PLDA
when tested on short segments, and keeps the accuracy of the latter
for long enough utterances. In particular, the relative improvement
is up to 13% for the EER, 5% for DCF08, and 2.5% for DCF10.

Index Terms— Speaker recognition, i–vector, PLDA

1. INTRODUCTION

Recent developments in speaker recognition technology have seen
the success of systems based on a low–dimensional representation of
a speech segment, the so–called “identity vector” or i–vector [1]. An
i–vector is a compact representation of a Gaussian Mixture Model
(GMM) supervector [2], which captures most of the GMM super-
vectors variability. It is obtained by a MAP estimate of the mean of
a posterior distribution [3]. The covariance of the distribution, which
accounts for the ”uncertainty” of the i–vector extraction process is,
however, not exploited by the classifiers based on i–vectors, such as
Probabilistic Linear Discriminant Analysis (PLDA) [4, 5].

The i–vector covariance essentially depends on the zero–order
statistics estimated on the Gaussian components of a Universal
Background Model (UBM) for the set of observed features (see
equation 2 in Section 2). These statistics are affected by several
factors such as the noise level and the acoustic content of the ob-
served features, but mainly depend on the number of the observed
features, i.e., on the length of the speech segments that are used
for characterizing a speaker. Shorter utterances tend to have larger
covariances, so that i–vector estimates become less reliable.
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This paper presents a new PLDA model that incorporates the
intrinsic uncertainty of the i–vector extraction process. In our ap-
proach, we show that it is possible to keep the simple and effective
PLDA framework even if a speech segment is no more mapped to a
single i–vector but to the i–vector extractor posterior distribution.

Since segment duration is the main factor affecting the i–vector
covariance, and short segments are known to be less reliable, we
tested our approach on the NIST SRE 2010 telephone extended core
condition [6] standard tests, and on segments of small and variable
duration in enrollment and test, evaluating also the effects of i–vector
length normalization [7]. Our results show that, when tested on short
segments, the new model outperforms the standard PLDA, and keeps
the accuracy of the latter for long enough utterances.

The paper is organized as follows: Section 2 recalls the i-vector
extraction process. Section 3 illustrates the generative PLDA model,
and shows how to compute the likelihood that a set of utterances be-
long to the same speaker. In Section 4 we derive the formulation of
the likelihood for the Gaussian PLDA model based on the i–vector
extractor posterior distribution. Section 5 illustrates our new PLDA
model, where the distribution of the inter–speaker variability is as-
sumed to be utterance–dependent. Section 6 is devoted to the impor-
tant issue of i–vector length normalization. Section 7 presents the
experimental results, and in Section 8 we draw our conclusions.

2. I–VECTOR MODEL

I–vector based techniques represent the state–of–the–art in speaker
verification [1, 8]. The i–vector model constrains the GMM super-
vector s, representing both the speaker and inter–session characteris-
tics of a given speech segment, to live in a single subspace according
to:

s = u+Tw , (1)

where u is the Universal Background Model (UBM) GMM mean
supervector, with C GMM components of dimension F . T is a low-
rank rectangular matrix spanning the subspace including important
inter and intra–speaker variability in the supervector space, and w

is a realization of a latent variable W, of size M , having a standard
normal prior distribution. A Maximum-Likelihood estimate of ma-
trix T is usually obtained by minor modifications of the Joint Factor
Analysis approach [3]. Given T and a sequence of τ feature vec-
tors X = x1x2 . . .xτ extracted for a speech segment, it is possible
to compute the likelihood of X given the model (1) and a value for
variable W. The i-vector φ corresponding to the speech segment
is computed as the Maximum a Posteriori (MAP) point estimate
of the variable W, i.e., the mean µX of the posterior distribution
PW|X (w).

In [3], it has been shown that, assuming a standard Normal prior
for W, the posterior probability of W given the acoustic feature
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vectors X is Gaussian W|X ∼ N (µX ,Γ−1
X ), with mean vector

and precision matrix:

µX = Γ
−1
X T

∗
Σ

−1
fX

ΓX = I+

C∑

c=1

N
(c)
X T

(c)∗
Σ

(c)−1

T
(c)

, (2)

respectively. In these equations, N (c)
X are the zero–order statistics

estimated on the c-th Gaussian component of the UBM for the set
of feature vectors X , fX is the supervector stacking the first–order
statistics f (c)X , centered around the corresponding UBM means, Σ(c)

is the UBM c–th covariance matrix, Σ is a block diagonal matrix
having the matrices Σ(c) as its entries, T(c) is the sub-matrix of T
corresponding to the c–th mixture component, and γ

(c)
t is the c-th

occupation probability of feature vector xt.

3. PLDA WITH I–VECTOR POSTERIORS

State–of–the–art performance has been obtained by using i–vectors
with generative models based on PLDA. In the PLDA framework,
Factor Analysis is applied to describe the i–vector generation pro-
cess. In particular, an i–vector is considered a random variable Φ

whose generation process can be described in terms of latent vari-
ables. Different PLDA models exist [5, 4, 9], which use different
numbers of hidden variables as well as different priors. All PLDA
models for speaker recognition, however, represent the speaker iden-
tity in terms of a latent variable Y which is assumed to be tied across
all utterances of the same speaker. Usually, inter–speaker variability
is represented by utterance–dependent hidden variables Xi, which
are assumed to be i.i.d. with respect to the utterances. The most
common PLDA model considers an i–vector φ as the sum of differ-
ent terms [4]:

φ = m+Uy +Vx+ e (3)

where m is the i–vector mean, y is a realization of the speaker iden-
tity variable Y, x is the realization of channel variable X and e is
the realization of the residual noise E. The role of matrices U and V

is to constrain the dimension of the subspaces for y and x, respec-
tively. Since i–vectors are assumed independent given the hidden
variables, the likelihood that a set of n utterances belong to the same
speaker (hypothesis Hs) can be computed as:

l (u1 . . . un|Hs) = PΦ1...Φn|Hs
(φ1 . . .φn)

=

∫

y

∫

x1

· · ·

∫

xn

∏

i

[
PΦi|Y,Xi

(φi|y,xi)PXi
(xi) dxi

]

· PY(y)dy , (4)

where PΦ1...Φn|Hs
(φ1 . . .φn) is the joint distribution of the i–

vectors given the ”same speaker” hypothesis Hs, PX(x) and PY(y)
are the prior distributions for X and Y, and PΦ|Y,X (φ|y,x) is the
conditional distribution of an i–vector given the hidden variables,
which is related to the distribution PE(e) of the noise term by
PΦ|Y,X (φ|y,x) = PE(φ − m − Uy − Vx). Since speaker
factors are assumed independent, given a set of n enrollment utter-
ances ue1 . . . uen for a target speaker and a set of m test utterances
belonging to a (single) unknown speaker ut1 . . . utm , the speaker
verification log–likelihood ratio s can be computed, using (4), as:

s = log
l (ue1 . . . uen , ut1 . . . utm |Hs)

l (ue1 . . . uen |Hs) l (ut1 . . . utm |Hs)
.

The standard i–vector, which is extracted by MAP point estimate of
the posterior distribution of W given X , and then used by PLDA,
ignores the intrinsic uncertainty of its estimate. However, it is well
known, for example, that i–vectors extracted from short utterances
do not capture the speaker characteristic as well as i–vectors ex-
tracted from long utterances. Since the uncertainty associated with
the extraction process of the i-vector, which is represented by its
posterior covariance, is not taken into account by the usual PLDA
models, in this work we extend the model to exploit this additional
information. We refer to this new model as the PLDA based on the
”full posterior distribution” of W given X , where we assume that
every utterance is no more mapped to a single i–vector but to the i–
vector extractor posterior distribution of W|X . Thus, X is mapped
to i–vector φ according to probability distribution PW|X (φ).

The PLDA model allows computing the likelihood of an utter-
ance given a realization of the random variable W|X , which is a
mapping of the utterance features X . The likelihood of a set of ut-
terances, thus, can be evaluated by integrating the classical PLDA
likelihood over all i–vectors that the utterances can generate as:

l (u1 . . . un|Hs) =

∫

φ1

· · ·

∫

φn

l (u1 . . . un|Hs,W1 = φ1, . . . ,

Wn = φn)
∏

i

[
PWi|Xi

(φi)dφi

]
(5)

=

∫

φ1

· · ·

∫

φn

PΦ1...Φn|Hs
(φ1 . . .φn)

∏

i

[
PWi|Xi

(φi)dφi

]

where the first term is the likelihood of the utterances according
to the classical PLDA model given the realizations φ1, . . . ,φn of
the i–vector posterior random variables, computed as in (4), and the
second term is the likelihood that the i–vectors φ1, . . . ,φn were
mapped to utterances u1, . . . , un according to the i–vector extractor
model. Replacing (4) in (5) we can rewrite the likelihood as:

l (u1 . . . un|Hs) =

=

∫

φ1

· · ·

∫

φn

∫

y

∫

x1

· · ·

∫

xn

∏

i

[
PΦi|Y,Xi

(φi|y,xi)

· PXi
(xi)PWi|Xi

(φi) dxidφi

]
PY(y)dy . (6)

It is worth noting that, by replacing the posterior for W|X with a
delta distribution centered in the posterior mean δ(µX ), we return
to the original PLDA model using MAP–estimated i–vectors.

In this work we consider only PLDA with Gaussian priors, be-
cause these models have shown to be accurate and effective with
respect to more computational expensive models such as the Heavy–
Tailed PLDA [4, 7]. Moreover, we will assume that the noise term
E has full covariance matrix, so that the term Vx and e in (3) can
be merged. Thus, an i–vector φ is defined as:

φ = m+Uy + e . (7)

4. GAUSSIAN PLDA MODEL

The Gaussian PLDA approach assumes that the speaker factors and
the residual noise priors are Gaussian, in particular:

Y ∼ N (0, I) , E ∼ N (0,Λ−1) ,

where Λ is the precision matrix of noise E. According to (7), the
conditional distribution of an i–vector random variable Φ given a
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value y for the speaker identity Y is:

Φ| (Y = y) ∼ N (m+Uy,Λ
−1) . (8)

The likelihood that a set of n utterances belong to the same speaker
can be computed by (4) ignoring the channel factors:

l(u1 . . . un|Hs) = PΦ1...Φn
(φ1 . . .φn|Hs)

=

∫

y

∏

i

PΦi|Y(φi|y)PY(y)dy . (9)

Introducing the full i–vector posterior as in (5), we get:

l (u1 . . . un|Hs) =

∫

φi

· · ·

∫

φn

∫

y

PY(y)

·
∏

i

[
PΦi|Y(φi|y)PWi|Xi

(φi)dφi

]
dy

=

∫

y

PY(y)
∏

i

[ ∫

φi

PΦi|Y(φi|y)PWi|Xi
(φi)dφi

]
dy ,

The inner integral can be computed as:
∫

φi

PΦi|Y(φi|y)PWi|Xi
(φi)dφi =

∫

φi

1

(2π)
D

2

∣∣Λ−1
∣∣ 1

2

e
− 1

2
(φi−m−Uy)TΛ(φi−m−Uy)

·
1

(2π)
D

2

∣∣Γ−1
i

∣∣ 1

2

e
− 1

2
(φi−µi)

TΓi(φi−µi)dφi , (10)

where µi and Γi are the mean and precision matrix of Wi|Xi com-
puted as in (2). Integral (10) can be interpreted as the convolution of
two Gaussian distributions, leading to:

l(u1 . . . un|Y = y) =
1

(2π)
D

2

∣∣Λ−1 + Γ−1
i

∣∣ 1

2

(11)

· e(µi−m−Uy)T (Λ−1+Γ
−1

i )
−1

(µi−m−Uy)
.

The result in (11) can be interpreted as the likelihood of a standard
PLDA model where an utterance is, as usual, mapped to the mean
µi of the i–vector posterior Wi|Xi, but the PLDA conditional likeli-
hood is utterance–dependent, i.e., the residual noise Ei in the PLDA
model is replaced by the utterance–dependent noise Ei distributed
as Ei ∼ N

(
0,

[
Λ−1 + Γ−1

i

])
. This can be shown by observing

that the right side of equation (11) is a Gaussian distribution for µi.
Considering every µi as a realization of a random variable Mi, we
can write the conditional likelihood of a set of n utterances as:

l(u1 . . . un|Y = y) =
∏

i

PMi|Y(µi|y) , (12)

where Mi|y is distributed as in (11). The likelihood that the utter-
ances belong to the same speaker is then given by:

l(u1 . . . un|Hs) =

∫

y

∏

i

PMi|Y(µi|y)PY(y)dy . (13)

Comparing (13) and (9) we see that the models are equivalent ex-
cept for the form of the conditional likelihood. Thus, we can derive
simple expressions for parameter training and for computing speaker
verification log–likelihood scores. In particular, training the PLDA

parameters can be performed by adapting the EM algorithm that is
used for estimating the standard PLDA model parameters [4]. How-
ever, since we assume that the training utterances are long enough so
that MAP approximation is accurate, in the following we will focus
on the computation of speaker verification log–likelihood ratios.

5. GAUSSIAN PLDA POSTERIORS

The same steps used for the standard Gaussian PLDA model can
be followed for deriving the log–likelihood of a set of utterances
belonging to the same speaker, just using the modified likelihood in
(11). Our new PLDA model can then be described as:

µ = m+Uy + e , (14)

as in (7), but the distribution of the residual noise E is utterance–
dependent. The i–vector associated to the utterance ui is again the
mean µi of the i–vector posterior Wi|Xi, while the priors of the
PLDA parameters are given by:

Y ∼ N (0, I) , Ei ∼ N (0,Λ−1 + Γ
−1
i ) ∼ N (0,Λ−1

eq,i) ,

where
Λeq,i =

(
Λ

−1 + Γ
−1
i

)−1
.

In the following, to simplify the notation we will refer to distribu-
tions without explicitly naming the corresponding hidden variable,
i.e., we will write P (y) rather than PY(y).

In order to compute the likelihood of a set of n i–vectors
µ1 . . .µn (i.e., of a set of n utterances u1 . . . un), we observe that
the joint log–likelihood of the i–vectors and the hidden variables is:

logP (µ1 . . .µn,y|Hs) =
∑

i

logP (µi|y) + logP (y)

=
∑

i

[
−
1

2
(µi −m−Uy)TΛeq,i (µi −m−Uy)

]
(15)

+
1

2
y
T
y + k ,

where k is a constant collecting terms that do not depend on y. Equa-
tion (15) shows that the posterior distribution for y given a set of
i–vectors is once again Gaussian y|µ1 . . .µn ∼ N (µy,Λ

−1
y ), with

parameters:

Λy = I+
∑

i

U
T
Λeq,iU

µy = Λ
−1
y U

T
∑

i

Λeq,i (µi −m) . (16)

The likelihood that a set of utterances belong to the same speaker
can be written as:

P (µ1 . . .µn|Hs) =
P (µ1 . . .µn|y0)P (y0)

P (y0|µ1 . . .µn)
, (17)

where y0 can be freely chosen as long as the denominator is defined.
Setting for convenience y0 = 0, from (17) and (16) we finally get:

logP (µ1 . . .µn|Hs) =

∑

i

[
1

2
log |Λeq,i| −

D

2
log 2π −

1

2
(µi −m)TΛeq,i(µi −m)

]

−
1

2
log |Λy|+

1

2
µ

T
y Λyµy . (18)
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Table 1: Comparison of GPLDA and Full Posterior GPLDA for complete conversations and randomly chosen cuts of different duration.
FP refers to full posterior GPLDA, LN, and PLN to Length Normalization and Projected Length Normalization, respectively.

Cuts Enroll: Full - Test: Full Enroll: 10-30s - Test: 10-30s Enroll: 3-60s - Test: 3-60s Enroll: 10-30s - Test: 3-60s

System EER % DCF08 DCF10 EER % DCF08 DCF10 EER % DCF08 DCF10 EER % DCF08 DCF10
PLDA 3.59 0.154 0.401 9.56 0.482 0.932 10.94 0.464 0.836 10.12 0.466 0.900
PLDA-LN 1.99 0.100 0.339 7.37 0.382 0.860 7.13 0.339 0.771 7.25 0.360 0.830
FP 3.51 0.150 0.392 8.21 0.409 0.885 7.80 0.377 0.802 7.89 0.392 0.845
FP-LN 2.03 0.100 0.346 6.80 0.354 0.828 6.21 0.324 0.753 6.29 0.341 0.810
FP-PLN 2.03 0.100 0.346 6.82 0.354 0.828 6.21 0.324 0.753 6.29 0.341 0.810

6. I–VECTOR PRE–PROCESSING

A pre–processing step, which involves i–vector whitening followed
by length normalization [10, 7], is required to achieve state–of–the–
art results using i–vectors with Gaussian PLDA models. While it
is easy to understand length normalization applied to i–vectors, dif-
ferent interpretations of length normalization lead to different nor-
malizations of the posterior covariance matrices. A straightforward
approach consists in replacing the i–vector distribution W|X by
Ŵ = W|X

‖W|X‖
, which forces all realizations of Ŵ to lie on the

unit sphere. However, since the resulting random variable Ŵ is not
Gaussian distributed, it is not possible to rely on the simple deriva-
tions of Section 4, and avoid the higher complexity introduced by
the use of a non Gaussian distribution. We implemented a second
approach, where length normalization is considered a non–linear
transformation F (φ0) of the observed i–vector φ0 that can be ap-
proximated by its first order Taylor expansion around the i–vector
itself:

F (φ) = F (φ0) + JF (φ0)(φ− φ0) + o(‖φ− φ0‖) , (19)

where JF (φ0) is the Jacobian of F computed in φ0 and F is the
function F (x) = x

‖x‖
. Developing the Jacobian, the linear transfor-

mation which best approximates the length normalization function
around the i–vector is given by:

F̂ (φ) = F (φ0) + JF (φ0)(φ− φ0) = u+
(I− uuT )

‖φ0‖
φ (20)

where u = φ0

‖φ0‖
and I is the identity matrix. Assuming that i–vector

posterior covariances are small enough, we can replace length nor-
malization by the linear transformation (20) computed around the
i–vector posterior mean µX . The extension to the full i–vector pos-
terior consists in modifying the mean and covariance of the posterior
distribution of W|X ∼ N (µX ,Γ−1

X ) as:

Ŵ ∼ N

(
µX

‖µX ‖
,

1

‖µX‖2
(I− uXu

T
X )Γ−1

X (I− uXu
T
X )

)
, (21)

where uX = µX

‖µX ‖
.

Since the projection matrix (I− uXuT
X ) and matrix I differ for

a single eigen–value, (I− uXuT
X ) can be well approximated by the

identity matrix, and Ŵ as:

W ∼ N

(
µX

‖µX‖
,

Γ−1
X

‖µX‖2

)
. (22)

In the next section we will refer to (21) as ”Projected Length Nor-
malization” (PLN), and to (22) as ”Length Normalization” (LN).

7. EXPERIMENTAL RESULTS

The proposed PLDA model aims at compensating inaccuracy and
mismatch in i–vector estimates of short and variable duration speech
segments. Thus, a dataset has been defined that consists of speech
segments, from NIST SRE10 female tel–tel extended core condition,
which were cut to obtain segments of variable duration in the range
10–30 and 3–60 seconds, respectively.

A gender dependent i–vector extractor based on 60–dimensional
cepstral features and a 2048–component full covariance gender inde-
pendent UBM was used for the experiments. The UBM and i–vector
extractor were trained using the same data described in [8] and set
to produce 400–dimensional i–vector posteriors. PLDA was trained
with a 120–dimensional speaker subspace.

Table 1 summarizes the results of the tests performed on the
standard NIST SRE 2010 female tel–tel extended core condition, in
terms of percent Equal Error Rate and normalized minimum Detec-
tion Cost Function (DCF) as defined by NIST for SRE08 and SRE10
evaluations [6]. The standard Gaussian PLDA and the new Full Pos-
terior PLDA systems are compared using complete conversations as
well as cuts of different duration.

The first set of tests refers to standard NIST SRE10 female tel–
tel extended core condition, without cuts. The aim of these exper-
iments, performed without and with i–vector length normalization,
was to verify that the new model does not introduce any degrada-
tion for long utterances. Length normalization for the Full Posterior
(FP) PLDA was performed as described in Section 6. As expected,
the standard and the FP systems give the same performance. In both
cases, length normalization is crucial to obtain the best results.

The systems were then tested using cuts of variable durations
for enrollment and test segments. For cuts in the range 10 to 30
seconds of speech used both in enrollment and testing, there is of
course a performance degradation, but the FP model performs better
than standard GPLDA, showing a significant improvement in terms
of EER and slight improvement in terms of DCF. It is worth noting
that length normalization plays again an important role also for the
FP model, and that length normalization and projected length nor-
malization give similar results. The other results in Table 1, referring
to different training and test cuts, show the same trend.

8. CONCLUSIONS

A new PLDA model has been presented, which exploits the uncer-
tainty of the i-vector extraction process. We derived the formulation
of the likelihood for a Gaussian PLDA model based on the i–vector
posterior distribution, and illustrated our new PLDA model, where
the inter–speaker variability is assumed to have an utterance depen-
dent distribution, showing that we can rely on the standard PLDA
framework simply replacing the likelihood definition.
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