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ABSTRACT 

 
During the last few years, i-vectors have become an important 

component in most state-of-the-art speaker recognition systems. I-

vector extraction is based on an assumption that GMM 

supervectors reside on a low dimensional space, which is modeled 

using Factor Analysis. In this paper we replace the above 

assumption with an assumption that the GMM supervectors reside 

on a low dimensional manifold and propose to use Diffusion Maps 

to learn that manifold. The learnt manifold implies a mapping of 

spoken sessions into a modified i-vector space which we call d-

vector space. D-vectors can further be processed using standard 

techniques such as LDA, WCCN, cosine distance scoring or 

Probabilistic Linear Discriminant Analysis (PLDA). We 

demonstrate the usefulness of our approach on the telephone core 

conditions of NIST 2010, and obtain significant error reduction. 

 

Index Terms— Speaker verification, Diffusion Maps, i-

vectors, Non-linear dimensionality reduction, Pattern recognition. 

 

1. INTRODUCTION 

 
During the last few years i-vectors have become the standard front-

end layer in most of state-of-the-art speaker verification systems. In 

[3] the authors showed that most of the speaker variability in the 

high dimensional GMM space may be captured by a low 

dimensional subspace named as the Total Variability space. 

Therefore, the i-vector framework provides a way to map the 

high dimensional GMM supervectors to a relatively low 

dimensional vectors, named i-vectors. In a common setup, i-

vectors are used as a front-end processing which is followed by a 

subsequent chain of linear projections, LDA and WCCN [3]. 

Recently, an even more successful technique named PLDA [9, 10] 

has been introduced to the speaker recognition community and 

currently i-vector extraction followed by PLDA is regarded as an 

extremely robust and accurate framework for speaker verification.  

However, it was not until recently that Karam et al. [2] showed 

that the GMM supervectors in the GMM space are lying on a low 

dimensional manifold and that by the use of manifold learning 

techniques such as graph geodesics and ISOMAP [8] it is possible 

to improve classification error. A further attempt for non-linear 

dimensionality reduction for speaker recognition has been done in 

[4]. In that work, the authors used a manifold learning technique 

named Diffusion Maps (DM) [6], however they abandoned the 

GMM framework. Instead, they used 78 dimensional feature 

vectors consisting of MFCC and delta MFCC mean, variance, min 

and max statistics extracted from a session.  

In this paper we propose an alternative non-linear way for i-

vector extraction we name d-vector extraction. The proposed 

algorithm is based on the DM framework and may further be 

processed using standard techniques such as PLDA. We 

demonstrate the effectiveness of our algorithm and compare its 

results with the state-of-the-art i-vector based PLDA algorithm on 

the NIST 2010 Evaluation data.  

Our work differs from the previous ones in several aspects. 

First, unlike [8], we choose to use the DM framework due to its 

better modeling of relations between data points and the relatively 

easy way it can be extended to new data points using geometric 

harmonics [7]. Secondly, as opposed to the approach presented in 

[4] we do use the GMM framework as a baseline representation of 

the data and consequently use a more appropriate metric function 

than a simple Euclidean distance in order to model the relations 

between the GMM supervectors. Lastly, in both [4] and [8], the 

experiments focused on clustering and data mining tasks which are 

based on the assumption that the evaluation data or part of it is 

given a priori to the recognition system. Hence, these setups are 

not suitable for the scenario when the evaluation data is unknown 

and is given only on test time. 

The paper is organized as follows: In Section 2 we provide an 

overview of the DM framework. In Section 3 we present in detail 

the proposed d-vector extraction algorithm. In Section 4 we 

describe the experimental setup and results. In Section 5 we 

conclude.     

 

2. DIFFUSION MAPS 

 
Diffusion Maps (DM) [6] is a machine learning technique for non-

linear dimensionality reduction. Different from other 

dimensionality reduction methods such as principle component 

analysis (PCA), multi-dimensional scaling (MDS), and factor 

analysis (FA), DM is a non-linear method that focuses on 

discovering the underlying manifold that the data has been 

sampled from.  

In this method an affinity matrix is built which is used to 

generate a diffusion process. As the diffusion process progresses, it 

integrates local geometry to reveal geometric structures of the data 

at different scales. Based on the revealed geometry, one can 

measure the similarity between two data samples at a specific scale. 

A diffusion map embeds the high dimensional data in a lower-

dimensional space D , such that the Euclidean distance between 

points in D  approximates the diffusion distance in the original 

feature space. The dimension of D is determined by the geometric 

structure underlying the data, and the accuracy by which the 

diffusion distance is approximated.  

7639978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



 

 

In our setup, the high dimensional feature vectors are the 

GMM supervectors that represent different sessions in the GMM 

supervector space G , we note them as g-vectors. DM is performed 

in order to map the g-vectors to l -dimensional d-vectors in the 

diffusion space D . From now on, we will use these notations to 

differ between the original high dimensional feature space, and the 

low dimensional diffusion space.  The rest of this section discusses 

the DM algorithm in more detail.  

Given a development set of n g-vectors 
1{ }n

i ix G   the first 

step in the DM algorithm is to define an affinity metric ( , )i jc x x  

over G . Then this metric should be converted to a similarity 

measure. A common approach for this type of conversion is using 

the Gaussian kernel: 

     

2( , )
( , ) exp

i j

i j

c x x
k x x



 
  

 
 

         (1) 

where the  parameter determines the scale or size of the 

neighborhood we trust our local similarity measure to be accurate 

in. In practice,   is chosen empirically or according to prior 

knowledge of the geometric structure and density of the data. 

Therefore, for an intricate, non linear and dense structure,   

should be set to a small value, while for a sparse structure large 

values might be considered as more suitable. 

In this way, we can define a full undirected graph where the g-

vectors are the nodes, and the weights of the edges are determined 

according to the diffusion kernel in (1). We then define a random 

walk on this graph by converting the similarity measure to a 

probability function as follows: ( , ) ( , ) / ( )i j i j ip x x k x x z x  

where 
1

( ) ( , )
n

i i j

j

z x k x x


  . The next step is to define a 

transition Markov matrix P  in which the entry 
, ( , )i j i jP p x x  is 

the probability of transition from node ix  to node 
jx  in a single 

step. In the same way, 
tP  is a matrix in which the entry ,

t

i jP  is the 

probability of transition from node ix  to node 
jx  in t steps. 

Based on the above construction, a diffusion distance after t  

steps is defined as follows: 
2

, ,

1

( , ) ( )
n

t t

t i j i k j k

k

Q x x P P


  . By 

spectral decomposition of P  we get a complete set of eigenvalues 

0 11 ... n       and left and right eigenvectors satisfying:  

i i iP   . We then define a mapping 
1:{ }n

t i iM x D   

according to: 1 1( ) ,...,
T

t t

t i i l liM x      , where ki  indicates 

the i -th element of the k -th eigenvector of P and l is the 

dimension of the diffusion space D . It has been shown [6] that for 

1l m   the following equation holds: 
2

2
( ) ( ) ( , )t i t j t i jM x M x Q x x  . This result justified the use of 

squared Euclidean distance in the diffusion space. Of course in 

practice one should pick 1l m  according to the decay of 

1{ }n

i i 
. This decay is related to the complexity of the intrinsic 

dimensionality of the data and the choice of the parameter  . 

 
Figure 1: Travelling along the blue path (which follows 

the intrinsic geometry of the manifold) has higher 

probability than travelling along the red path as the 

diffusion process progress. 

   

Figure 1 shows an illustrative example for a diffusion process. Two 

alternative paths are connecting points on the manifold. The blue 

path is the longer one but is the one which follows the geometric 

structure of the manifold while the red path is the short one but 

does not follow the manifold structure. As the number of steps in 

the diffusion process, t , increases, the probability of travelling 

along the blue path also increases, since it consists of many short 

distance jumps. However, the probability of travelling along the 

red path stays always small (and becomes smaller and smaller as 

the t increases) as it is consists of long distance jumps. 

So far we addressed the situation when all g-vectors are given 

a-priori. However, we need to also address the situation where a 

new g-vector 
1 1{ }n

n i ix x   is introduced and we are asked to 

extract its corresponding d-vector. A naïve approach would be to 

repeat the whole process described above from the beginning. 

Although this might be practical in offline applications, it is 

extremely inefficient and results in large amount overhead. This 

out-of-sample extension problem is well-studied in the manifold 

learning community and recently, many successful methods [5] 

have been proposed to alleviate it. In this work we chose to use the 

Geometric harmonic [7] approach which is based on Nystrom 

extension:  

 
( 1) 1,

1

1 n

k n n j kj

jk

P 


 



  .                               (2) 

This extension extends each of the eigenvectors with one 

additional entry corresponding to the new g-vector while it is 

consistent on the development set 
1{ }n

i ix 
. This results in an 

extended mapping: 1 1

1:{ }nx n

t i iM x D 

   .  

 

3. D-VECTOR EXTRACTION FOR SPEAKER 

VERIFICATION 

 
Our main contribution in this work is the utilization of the DM 

framework for a non-linear method for i-vector extraction for 

speaker verification. This type of extraction results in a d-vector. 

This d-vector can be used independently or in conjunction with the 

traditional i-vector. The proposed method is divided into two 

phases: DM training and d-vector extraction.  

 

3.1. DM training 

 

7640



 

 

In this phase we train the DM model. The input to this phase is a 

development set of g-vectors (GMM supervectors means)  
1

n

i i
g


, 

where each g-vector corresponds to a development session. First, 

following [13] we  normalize each ig  as follows : 

 1/2 1/2( )i d i m i dx w I g      where d  is the  
1

n

i i
g


sample 

mean vector, d is the  
1

n

i i
g


 diagonal sample covariance matrix, 

iw  is the vector of stacked mixture GMM weights corresponding 

to the i-th g-vector,   is the Kronecker product  and mI  is the 

identity matrix of size m , which is the g-vector dimension. Note 

that this type of normalization generates a new set of normalized g-

vectors 
1{ }n

i i dx G G    . Then, by applying the DM algorithm 

to dG , we learn the structure of the underlying speaker manifold 

that resides in G . This is done by defining a mapping 

:t dM G D  as described in Section 2. In this work we chose to 

use the following diffusion kernel: 

  

2(1 ( , ))
( , ) exp

i j

i j

c x x
k x x



 
  

 
 

         (3) 

where ,i jx x G and ( , )c    is the cosine distance [3]. In this way 

each g-vector is mapped to a corresponding l - dimensional d-

vector.  

The computational complexity of the training phase is reduced 

to the complexity of spectral decomposition of the transition matrix 

P. Note that the decomposition is carried out only for the first l 

eigenvectors and eigenvalues, for a selected parameter l. The size 

of P is determined by the size of the development set. 

 

3.2. D-vector extraction 

 

As explained in Section 2, the mapping tM  is defined only on the 

domain dG  (the normalized development set). Therefore, in case 

of a new test g-vector, \ dx G G , tM  has to be extended to  

: { }x

t dM G x D   in order to estimate the new coordinates of 

x  in D . For this task we use the geometric harmonic technique 

described in Section 2. Therefore, as already explained in Section 

2, the diffusion distance between a pair of g-vectors in G  can be 

approximated by the squared Euclidean distance between the 

corresponding pair of d-vectors in D . 

The computational complexity of d-vector extraction is 

determined by the size of the development set and the complexity 

of the chosen diffusion kernel. Given a new g-vector, the extension 

is done according to (2). Therefore it is necessary to compute a 

new row in the transition matrix which is corresponding to the 

probability of jumping from the new test g-vector to each of the 

development g-vectors, separately. It is important to clarify that 

other extension methods can be also considered. For example, the 

method proposed in [5] have been proved to be more robust and 

computational efficient than the one used in our paper. 

 

4. EXPERIMENTAL SETUP AND RESULTS 

4.1 Front-end 

The front-end we use throughout this paper is based on Mel-

frequency cepstral coefficients (MFCC). An energy based voice 

activity detector is used to locate and remove non-speech frames. 

The final feature set consists of 12 cepstral coefficients augmented 

by 12 delta and 12 delta-delta cepstral coefficients extracted every 

10ms using a 32ms window. Feature warping [1] is applied with a 

300 frame window. We use a GMM order of 1024 for estimating 

sufficient statistics for i-vector extraction and for estimation 

supervectors for d-vector extraction. 

 
4.2. Gaussian-PLDA 

 

PLDA jointly models speaker and channel variability in the i-

vector (or d-vector) space. A speaker and channel dependent i-

vector (or d-vector) can be defined as 

 

w = w +Vy + Ux + ε                              (4) 

 

where w denotes the observed i-vector (d-vector), w  is a global 

mean i-vector (d-vector),  y and x are the speaker and channel 

factor respectively, V and U are the eigenspeaker and eigenchannel 

matrices. ε is a residual vector that is assumed to be distributed 

according to the standard normal distribution. 

The PLDA model is trained on a development data for a given 

eigenspeaker rank and a given eigenchannel rank. In verification 

phase, the verification score has a closed form expression which 

can be found in [11].  

 

4.3 I-vector PLDA baseline system 

 

Our baseline system is a gender-dependent i-vector based 

Gaussian-PLDA system inspired by [11]. We set the dimension of 

the i-vectors to 400 (600 dimensional i-vectors did not show 

improvement on our setup). The Gaussian-PLDA backend 

processes length-normalized i-vectors by first applying LDA for 

obtaining a dimensionality reduction to 250. The PLDA model we 

use is configured to have 200 eigenspeakers and 200 

eigenchannels. We do not apply any sort of score normalization (as 

we found score normalization to degrade accuracy). 

 

4.4. D-vector PLDA system 

 

The gender-dependent d-vector based PLDA system is similar to 

the i-vector based PLDA system described in the previous section 

except for the substitution of the i-vectors with d-vectors. In the 

DM training phase we chose the following set of parameters: l 

(dimension) = 800, 6  and 1t  . We found out that 300 

eigenspeakers and 300 eigenchannels were optimal for our setup. 

 

4.5. The fused system 

 

We fuse both the i-vector based PLDA system and the d-vector 

based PLDA system by doing a simple average (with equal 

weights) on the score level. 

 

4.6. Datasets 

 

We trained a gender-independent UBM on 12,711 sessions from 

Switchboard-II, NIST 2004 speaker recognition evaluation (SRE) 

and NIST-2006-SRE. For training the i-vector and d-vector 
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extractors we used 16989 (female) and 11145 (male) telephone 

sessions from NIST 2004-2006 and 2008 SREs. 

We ran experiments on the three telephone-only core 

conditions of NIST-2010-SRE (5, 6, and 8). 

 

4.7. Results 

 

Tables 1-3 present comparisons of the baseline i-vector based 

PLDA system with the proposed d-vector based PLDA system. 

The results are measured in Equal Error Rate (EER) , old-minDCF 

[12] and new-minDCF [12] respectively. 

 

Table 1. A comparison of i-vector PLDA to d-vector PLDA 

on NIST-2010 telephone only conditions. Results are in 

EER (%) 

System Condition 5 Condition 6 Condition 8 

Males 

i-vector PLDA 2.5 4.9 1.0 

d-vector PLDA 2.3 2.9 1.6 

Fused system 1.7 2.2 0.8 

Females 

i-vector PLDA 2.7 6.0 2.2 

d-vector PLDA 2.3 4.4 2.2 

Fused system 2.0 3.3 1.7 

 

Table 2. A comparison of i-vector PLDA to d-vector PLDA 

on NIST-2010 telephone only conditions. Results are in 

old min-DCF 

System Condition 5 Condition 6 Condition 8 

Males 

i-vector PLDA 0.138 0.231 0.073 

d-vector PLDA 0.131 0.192 0.045 

Fused system 0.103 0.128 0.033 

Females 

i-vector PLDA 0.132 0.244 0.087 

d-vector PLDA 0.127 0.224 0.065 

Fused system 0.096 0.199 0.056 

 

Table 3. A comparison of i-vector PLDA to d-vector PLDA 

on NIST-2010 telephone only conditions. Results are in 

new-min-DCF. 

System Condition 5 Condition 6 Condition 8 

Males 

i-vector PLDA 0.507 0.769 0.109 

d-vector PLDA 0.307 0.696 0.192 

Fused system 0.279 0.617 0.150 

Females 

i-vector PLDA 0.431 0.758 0.242 

d-vector PLDA 0.322 0.814 0.238 

Fused system 0.291 0.781 0.179 

Table 4 summarizes the gains we get using the d-vector based 

PLDA system and using the fused system compared to the baseline 

i-vector based PLDA system.  We see that the d-vector based 

PLDA system improves over the baseline by an average of 18.5%, 

13.5% and 9% for EER, old-minDCF and new-minDCF 

respectively, and the fused system improves over the baseline by 

40%, 32% and 18.5% for EER, old-minDCF and new-min-DCF 

respectively. 

 

Table 4. Summary of the improvements for the d-vector 

PLDA system and the fused system compared to the 

baseline i-vector PLDA system. Results for the separate 

conditions are averaged. Results are in relative 

improvement (in %) 

Measure d-vector PLDA system Fused system 

Males 

EER 19 44 

Old min-DCF 17 40 

New min-DCF 14 24 

Females 

EER 18 36 

Old min-DCF 10 24 

New min-DCF 4 13 

 

 

5. CONCLUSION 
 

In this paper we introduced the use of Diffusion Maps for the 

application of i-vector extraction for speaker verification systems. 

We presented the d-vector extraction algorithm. This algorithm can 

be used as a non-linear alternative to the traditional i-vector 

extraction algorithm. We demonstrated the effectiveness of d-

vector extraction algorithm when it is used as a front-end layer for 

a PLDA based speaker verification system. 

We managed to obtain reduced error using the d-vector based 

method compared to using i-vectors. The error reduction was in the 

range of 4-19%, depending on the gender and error measure. 

Furthermore, a simple fusion of the d-vector based system and 

the i-vector based system resulted in error reductions of 13-44% 

compared to the baseline, depending on the gender and error 

measure. 

. 
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