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ABSTRACT

We present a framework that improves real-time speech
recognition performance using deep neural networks (DNNs)
with auxiliary Gaussian mixture models (GMMs). The DNNs
and the auxiliary GMMs share the same hidden Markov
model (HMM) state inventory. First, online incremental
feature-space adaptation is performed using the GMM acous-
tic model. The speaker-adapted features are used to improve
the recognition performance of both GMM and DNN mod-
els. Second, the acoustic scores from GMMs and DNN are
combined at the state-level during decoding. Experiments on
a large vocabulary speech recognition task show that both ap-
proaches improve recognition performance consistently and
that the gains are mostly additive, resulting in about 5% rela-
tive improvement over the competitive DNN baseline in both
Portuguese and English systems.

Index Terms— DNN, GMM, speaker adaptation, system
combination.

1. INTRODUCTION

Over the past few years there have been significant advances
in automatic speech recognition (ASR) using deep neural net-
works (DNNs) for acoustic modeling [1]. Instead of us-
ing traditional Gaussian mixture models (GMMs) to model
the probability distribution of acoustic feature vectors asso-
ciated with each state of an hidden Markov model (HMM),
DNNs with many hidden layers, are used to produce poste-
rior probabilities over HMM states. The DNNs have been
shown to outperform GMMs by a large margin in several
competitive large-vocabulary continuous speech recognition
(LVCSR) systems [2, 3, 4].

Although DNNs have been shown to have superior power
for discriminating HMM states, the GMMs have the ad-
vantages of easily parallelizable training, fast and efficient
speaker adaptation [5], and being less computationally de-
manding. Furthermore, the GMM system exhibits different
error patterns compared to the DNN systems. This suggests
DNNs and GMMs may be complementary. If so, they could

be combined to achieve even better speech recognition per-
formance. In addition, since the target distributions for DNN
training are typically obtained from forced alignments gener-
ated by a baseline GMM system, the bootstrap GMMs can be
used directly at run-time without training overhead.

Given by the differences and similarities between DNN
and GMM acoustic models, this paper investigates how to im-
prove the performance of DNNs in real-time LVCSR systems
by adding auxiliary GMMs that share the same HMM state
inventory. Two approaches are studied: online incremental
speaker adaptation, and state-level score combination. Recent
studies [2, 6] have shown multi-pass batch-mode adapted fea-
tures improve accuracy on offline Switchboard transcription
benchmarks. In this paper we focus on online incremental
adaptation that is practical for real-time speech recognition
tasks such as mobile Voice Search. Different from conven-
tional system combination at the hypothesis-level [7], we ex-
plore the effectiveness of combining DNN and GMM acous-
tic scores at the state-level without introducing extra latency
in decoding.

The rest of this paper is organized as follows. In Sec-
tion 2, online feature-space adaptation for DNN is described.
Section 3 presents state-level score combination of DNN and
GMM. Section 4 shows the experimental results on adapta-
tion and combination. Finally, Section 5 concludes the paper
and discusses future work.

2. ONLINE INCREMENTAL FEATURE-SPACE
ADAPTATION FOR DNN

Speaker adaptation is important in reducing the mismatch
between training and decoding conditions. Various adapta-
tion techniques have been proposed for GMM-based acoustic
models. These techniques can be roughly divided into two
categories: model-space adaptation, and feature-space adap-
tation. Feature-space adaptation does not require modifying
the entire acoustic model, hence, it is well suited for real-time
ASR server systems. Constrained maximum likelihood lin-
ear regression (CMLLR) [5], also called feature-space MLLR
(fMLLR), is one of the most popular feature-space adapta-
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tion techniques adopted in research and commercial ASR sys-
tems [8, 9].

Unsupervised online fMLLR estimates and updates a
speaker-specific affine transformation of the feature vectors
during decoding. Let ot be the n-dimensional feature vector
at time frame t, the transformed feature ôt is,

ôt = Aot + b, (1)

whereA is the n×n rotation/scaling matrix, b is the n×1 bias
term. The transform parameters W = [A b] are estimated
by optimizing an auxiliary Q-function and can be solved iter-
atively [5].

For GMM systems, fMLLR can improve the recognition
accuracy with as little as 5 seconds of speech data. With
sufficient amount of adaptation data, fMLLR can typically
achieve 10% to 20% relative improvement in terms of word
error rate (WER), compared to a speaker independent base-
line. Since fMLLR adapts the input feature vectors, it is a
natural extension to use it to transform features for DNNs, if
they share the same feature space as the underlying GMMs.
Batch-mode fMLLR transformed features have been shown
effective for English Broadcast News and Switchboard offline
systems [2, 6]. Here we explore the efficacy of online incre-
mental fMLLR adaptation for DNNs in real-time LVCSR sys-
tems. It is also worth mentioning that in [2] the authors pro-
posed a feature-space discriminative linear regression (fDLR)
technique for DNNs using back-propagation. This technique
achieves similar gains to fMLLR, but it is more computation-
ally expensive and it is uncertain how well it works for online
incremental adaptation scenarios.

ot ôt

W

Fig. 1. Online incremental fMLLR adaptation for DNN.

As illustrated in Figure 1, for each utterance, the same fea-
ture vectors o1:T are used for GMM fMLLR adaptation and
transformed to ô1:T for DNN decoding. The GMM adapta-
tion also utilizes the Viterbi alignments from DNN decoding
to accumulate sufficient statistics and estimate feature trans-
form W . The feature transform block is initialized with an
identity transform and continuously updated to W once there
are enough adaptation data. Each updated transform W is
then applied to the feature vectors of the following utterances
in the speech session.

3. STATE-LEVEL COMBINATION OF GMM AND
DNN SCORES

In recent DNN-HMM based ASR systems, a DNN classifier
is discriminatively trained to predict the targets of context-
dependent (CD) HMM states. In the decoding phase, for each
observation vector o′t and CD-HMM state sj , the posterior
probability P (sj |o′t) is computed with the DNN and then con-
verted to state emission likelihood:

pdnn(o′t|sj) =
P (sj |o′t)
P (sj)

· p(o′t), (2)

where sj is the j-th HMM state, and observation vectors o′t
are acoustic feature vectors augmented with neighbor frames.
P (sj) is the prior probability of state sj , which can be esti-
mated from the frequency of the state in training alignments.
Since p(o′t) is a constant independent of state sj , we ignore it
in the likelihood computation.

In conventional GMM-HMM systems, for an acoustic
state sj with M multivariate Gaussian densities, the state
emission likelihoods are computed directly:

pgmm(ot|sj) =

M∑
m=1

wjmN (ot;µjm,Σjm), (3)

where wjm is the mixture weight of the m-th Gaussian com-
ponent in state sj , µjm is the mean vector, Σjm is the covari-
ance, andN (·;µ,Σ) denotes a Gaussian density with mean µ
and covariance Σ.

3.1. Speaker-independent score combination

We observe the phone classification error patterns of DNN
and GMMs are quite different. Therefore, combining DNN
and GMM systems may achieve better classification and ASR
performance. We perform system combination at the state-
level for every frame. This approach is similar to state-level
combination described in multi-stream audio-visual speech
modeling [10], but here different classifiers are used instead
of different knowledge sources. The final acoustic score for
frame t and state sj is a linear combination of DNN and
GMM acoustic scores:

log p̂(ot, o
′
t|sj) = αj log pdnn(o′t|sj)+(1−αj) log pgmm(ot|sj).

(4)
The parameter αj is the state-dependent weight of DNN log
likelihood score and is between 0 and 1. The state-dependent
weights can be learned by minimizing a discriminative crite-
rion such as phone or state classification error rate. For sim-
plicity, in this paper we use a single weight α for all states.
The weight α can be optimized by grid search on a develop-
ment set. A diagram of the state-level score combination is
shown in Figure 2. In this speaker-independent score combi-
nation case, different types of acoustic features may be used
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for DNN and GMM acoustic models. For example, we can
use filter-bank energies (FBE) for DNN and perceptual linear
predictive (PLP) features for GMM.

o′t

ot

1− α

α

Fig. 2. Speaker-independent state-level score combination of
DNN and GMM.

3.2. Speaker-adapted score combination

The state-level combination of DNN and GMM scores can be
used jointly with feature-space speaker adaptation described
in Section 2. For the DNN and GMM to share the same
feature-space adaptation transform, they need to be trained
from the same type of source features. In our adaptation ex-
periments, we use PLP features for both DNN and GMM
models.

ot

ôt

α

1− α

ô′t

W

Fig. 3. Speaker-adapted state-level score combination of
DNN and GMM.

A diagram of the complete system with feature-space
adaptation and state-level score combination is shown in Fig-
ure 3. The PLP features are incrementally adapted and sent
to DNN and GMM scorers to generate likelihood scores. The
adapted DNN and GMM scores are then combined for decod-
ing. This system runs in real-time mode and takes advantage
of both speaker adaptation and system combination. For mod-
ern multi-core CPUs, we can reduce latency by using separate
threads for DNN and GMM score computation, and for GMM
adaptation.

4. EXPERIMENTAL RESULTS

4.1. Baseline systems

The experiments are performed with a LVCSR system which
transcribes voice search queries, short messages, e-mails, and
user actions from mobile devices [11]. We experiment with
two systems: the Portuguese system with relatively small
amount of training data, and the US English system with
a very large training corpus. In both systems, the base-
line GMM-HMM models use triphone HMMs with decision-
tree clustered states. The acoustic features are 9 contiguous
frames of 13-dimensional PLP features spliced and projected
to 40 dimensions by linear discriminant analysis (LDA).
Semi-tied covariances (STC) [12] are used to further diago-
nalize the LDA transformed features. Boosted-MMI was used
to train the model discriminatively [13].

The GMM-HMM acoustic model is used to force align the
training data to obtain senone state labels for DNN training.
The input for the DNN is the same LDA+STC transformed
PLP features, but augmented with neighbor frames in a con-
text window. All DNNs in the experiments have four hidden
layers each with 2560 nodes and logistic activation, and an
output layer with softmax activation. At recognition time, the
weights in the DNN are quantized to 8 bits and fixed-point
SIMD primitives are used to achieve real-time decoding per-
formance [14].

The Portuguese GMM-HMM acoustic model is trained
using 100 hours of speech data. It has 2959 senone states and
27K diagonal covariance Gaussians. The same training set
is force aligned for DNN training. The DNN is trained from
scratch using DistBelief framework [15]. A context window
of 26 frames is used: left 20 frames, right 5 frames, plus cur-
rent frame. The test set is created from a quick data collection
procedure [16]. It contains about 10 hours of data, with 763
speakers and an average of 200 utterances per speaker.

The US English GMM-HMM acoustic model is built from
a very large corpus and has 7969 states and 580K Gaussians.
The GMMs are used to force align a subset of approximately
5780 hours of data for DNN training. The DNN is trained
with a context window of 18 frames (left 16 frames and right
1 frame) using GPU similar to [4]. For evaluation, we use
a 12-hour test set containing 100 speakers, with between 2
and 30 minutes of data for every speaker. Each speaker’s data
are collected over a period of usage in very different channel,
environment, and noise conditions. Therefore, this test set is
a challenging task for adaptation studies.

The performance results of baseline GMM and DNN
models in Portuguese (pt-pt) and US English (en-us) sys-
tems are shown in Table 1. We report both word error rate and
normalized sentence accuracy (NSACC) results. The pt-pt

DNN gives about 13% relative improvement over the base-
line GMM model. For comparison purpose, we also train
one DNN from 11 contiguous frames of 40 log filter-bank
energies with no temporal derivatives. This FBE DNN has a
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WER of 22.4%, which is slightly worse than the PLP DNN’s
22.2% result. Due to time constraint, the US English DNN is
not trained fully to convergence. It gives 0.9% absolute WER
improvement over the GMM baseline.

Table 1. Baseline WER and NSACC (%) results.
pt-pt en-us

Model WER NSACC WER NSACC
GMM 25.6 62.5 18.2 55.4
DNN 22.2 67.2 17.3 57.5

4.2. Adaptation for GMM and DNN

We then perform online incremental fMLLR adaptation ex-
periments on the GMM and DNN systems. Silence frames
are excluded from adaptation statistics accumulation. A min-
imum adaptation data threshold of 10 seconds is used for all
adaptation experiments. The adaptation results are presented
in Table 2.

Table 2. WER and NSACC (%) results of adaptation.
pt-pt en-us

Model WER NSACC WER NSACC
GMM 25.6 62.5 18.2 55.4
GMM + fMLLR 23.8 64.8 17.5 56.6
DNN 22.2 67.2 17.3 57.5
DNN + fMLLR 21.6 68.4 17.0 57.8

We can see that in pt-pt system, speaker adaptation im-
proves the GMM model by 1.8% absolute, and improves the
DNN model by 0.6% absolute. In en-us system, adaptation
improves GMM baseline by 0.7% absolute and DNN base-
line by 0.3% absolute. The improvements from adaptation
are much smaller in en-us system, probably due to the more
challenging test set. For both systems, the adaptation gain for
DNN is approximately 1/3 of that for GMM models. The rea-
son can be two-fold: first, the DNN can already learn some
aspects of speaker invariance [17, 2]; second, adapting the
DNN using the GMMs has a model mis-match due to the
cross-adaptation nature. Similar to speaker adaptive training
for GMMs, re-training the DNN using per-speaker normal-
ized features may also reduce the mismatch between training
and decoding.

4.3. Combination of GMM and DNN

Finally, state-level system combination experiments are per-
formed. We choose a single combination weight αj = 0.8 for
all states in all combination experiments. Since GMM mod-
els use Gaussian selection to reduce computation at recogni-
tion time, some acoustic states are not selected for a given

frame and the corresponding GMM score is a constant worst
score. For these cases, we find that ignoring the DNN score
and outputting the worst score achieve good WER results. We
also observe that very aggressive Gaussian selection thresh-
olds hurt the score combination.

Table 3. WER and NSACC (%) results of combination.

pt-pt en-us
Model WER NSACC WER NSACC
DNN 22.2 67.2 17.3 57.5
DNN + GMM 21.7 67.5 16.7 58.1
DNN + GMM + fMLLR 21.0 68.5 16.5 58.5

The combination results are summarized in Table 3. Com-
bining DNN and GMM scores achieves 0.5% absolute WER
improvement in pt-pt system and 0.6% absolute in en-us

system. This gain is mostly additive with the improvement
from incremental adaptation. The final system with both com-
bination and adaptation outperforms the baseline DNN sys-
tem by 1.2% absolute in pt-pt system, and 0.8% absolute in
en-us system. In both systems, the WER reduction is about
5% relative over the DNN baseline.

5. CONCLUSIONS

In this paper, we have described a framework of combining
DNN and auxiliary GMM acoustic models for improved real-
time speech recognition. Online incremental feature-space
adaptation is performed using auxiliary GMMs. The esti-
mated transform is applied to the features for both the GMMs
and the DNN. Then the output likelihood scores from the
DNN and GMMs are combined at the state-level for improved
decoding performance. On a large vocabulary speech recog-
nition task, we observe consistent improvement from both
techniques and the gains are mostly additive, achieving 5%
relative WER reduction over the DNN baseline in both Por-
tuguese and English systems.

Future work will include learning state-dependent combi-
nation weights with a discriminative criterion. We will also
investigate the use of smaller-sized GMM acoustic models to
reduce computation and memory footprint.
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