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ABSTRACT
Recently, structured classification approaches have been considered
important with a view to achieving unified modeling of the acoustic
and linguistic aspects of speech recognizers. With these approaches,
unified representation is achieved by directly optimizing a score
function that measures the correspondence between the input and
output of the system. Since structured classifiers typically employ
a linear function as a score function, extracting expressive features
from the input and output of the system is very important. On
the other hand, the effectiveness of deep neural networks has been
verified by several experiments, and it has been suggested that the
outputs of hidden layers in deep neural networks (DNNs) are es-
sential speech features that purely express phonetic information. In
this paper, we propose a method for structured classification with
DNN features. The proposed method expands conventional DNN-
based acoustic models so that they optimizes the weight terms of the
arcs in a decoding WFST, which is constructed with the on-the-fly
composition method. Since DNN-based features can be considered
enhancements in the input representation, the enhancements in the
output representation based on the WFST arcs are expected to com-
plement the DNN-based features. The proposed method achieved an
8 % relative error reduction even compared with a strong acoustic
model based on DNNs.

Index Terms— Speech recognition, weighed finite-state trans-
ducers, structured classification, deep neural networks

1. INTRODUCTION

Structured classification approaches have recently been considered
successful ways of achieving the joint optimization of the acoustic
and linguistic aspects in automatic speech recognition (ASR) [1–
3]. These approaches involve the extraction of features that describe
both the input and output of the system to be optimized, and the
optimization of a function that represents the correspondence score
of a given input and output pair. By using these features and score
functions, the unified model for ASR can be consistently optimized
by using a discriminative criterion. Even though there is a direct ap-
proach that jointly optimizes the parameters of conventional acoustic
models and language models (e.g. [4]), structured classification has
further advantages deriving from the flexibility of feature design.

On the other hand, recent developments of acoustic modeling
based on deep neural networks (DNNs) has been producing very
attractive results in several speech recognition tasks, including large
vocabulary continuous speech recognition (LVCSR) tasks [5, 6].
DNNs are typically used to substitute Gaussian mixture models
(GMMs) in continuous density hidden Markov model (CD-HMM)
acoustic models. To date, DNNs have mainly been used to enhance
the input representation of ASR.

In structured classifiers, a linear function is typically used as
a function that represents the correspondence score to ensure con-

vexity in the optimization. Therefore, several nonlinear features are
used that map input samples to a linearly separable space so that the
following linear function provides accurate classification. For ex-
ample, the log-likelihoods of GMMs in HMM-based acoustic mod-
els are used in [7], coefficients of Fisher information matrices are
used in [3], and higher order polynomial features are used in [8].
Recently, methods have been proposed that introduce the outputs
of hidden layers in DNNs as features for structured classification
[9, 10]. Since DNN-based acoustic models for ASR outperform con-
ventional speech recognizers, the application of DNN-based features
to structured classifiers might also be promising as regards enabling
both the accurate acoustic representation and unified optimization of
ASR. Even though these conventional structured classifiers are po-
tentially capable of leveraging rich contextual features to represent
the interdependence of the input and output of recognizers, features
and models must be restricted to the same form as the conventional
HMM-based acoustic model and N -gram based language models if
we are to apply one-pass decoding techniques to these classifiers.

In this paper, instead of using the conventional HMM and N -
gram model structure, we employed a structure determined by a
WFST representing a decoding network. Since WFSTs are con-
structed by expanding all possible state transitions combinations in
HMM, triphone model, pronunciation lexicon model, and so on, the
state transitions in WFSTs contain rich lexical contexts. To lever-
age such lexical information, we replace the fixed cost parameters
of the first WFST in an on-the-fly composition chain with optimiz-
able functions that score DNN-based acoustic features by using lin-
ear functions with a parameter vector defined for each WFST arc.
By optimizing the parameter vectors with sequential discriminative
training criteria, whole aspects of the speech recognizers are opti-
mized in terms of word error rates (WERs). Thanks to the WFST-
based structure, most one-pass decoding techniques are still straight-
forwardly applicable to structural classifiers that have the same struc-
ture as conventional decoding networks.

This paper is an extension of [11]. The method proposed in [11]
is not combined with large N -gram language models, and the pre-
liminary results for a continuous phoneme recognition task are pre-
sented. To enable an effective combination with realistic N -gram
language models, we exploit a structure of weight terms of WFSTs
constructed with an on-the-fly composition algorithm. The strat-
egy adapted in this work is based on the strategy used to scale-up
the GMM-based structured classifiers to LVCSR problems [7]. We
verify that this scaling up strategy is also applicable to DNN-based
structured classification even though the features used are high di-
mensional and very expressive.

2. WFST-DNN STRUCTURED CLASSIFIERS

Speech recognizers based on WFSTs output the most plausible word
sequence (ℓ̂) corresponding to the input observation sequence X by
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extracting the output labels O[â] assigned to each WFST arc in the
most plausible arc sequence â, as follows:

ℓ̂ =O[â] where â = argmax
a∈D

P (a|X), (1)

where D is a WFST represented as a set of possible arc se-
quences. In general, the probability of an arc sequence a =
{a1, a2, · · · an · · · } is defined by using transition cost function
ω(an;X), as follows:

P (a|X) ∝ exp

{∑
n

−ω(an;X)

}
. (2)

Even though the proposed method is applicable to one-pass decod-
ing, we consider that each arc aj in the arc sequences has annotations
providing alignment information; therefore, each arc has an output
label O[aj ], an input HMM-state label I[aj ], a weight term W [aj ],
start time T [aj ], and stop time T ′[aj ].

Since the number of arcs required to represent all possible state
changes in a recognition system increases exponentially in large vo-
cabulary systems, the on-the-fly composition method is introduced
in such cases. With this method, the overall decoding network D is
decomposed into several networks D = D(1) ◦ D(2) ◦ · · · , where
◦ is the composition operator. Moreover, each arc aj in D is rep-
resented as a tuple of arcs in the decomposed networks as aj =
(aj1 , aj2 , · · · ).

With this notation the transition cost function can be denoted as
follows:

ω(aj ;X) =g(aj1 ;X) + c
∑
k

W [ajk ], (3)

where c is a tuning parameter called a language model scale factor.
Here, we introduce an acoustic cost function g(aj1 ;X) that repre-
sents a negative logarithm of emission probability in HMMs. With
DNN-based acoustic models, g is denoted as follows:

g(aj1 ;X) =

T ′[aj1
]∑

τ=T [aj1
]

((
w

(L+1)

I[aj1
]

)T

h(L)(xτ ) + b
(L+1)

I[aj1
]

)
, (4)

where L is the number of hidden layers in the DNN, w(L+1)

I[aj1
] is a

vector containing the I[aj1 ]
th row of the (L + 1)th weight matrix

(the last weight matrix), b(L+1)

I[aj1
] is the I[aj1 ]

th element of the (L +

1)th bias vector, and h(L)(xτ ) is the output vector of the Lth hidden
layer (the last hidden layer) as a function of the input vector xτ .

This paper enhances the acoustic cost function g(aj1 ;X) to cap-
ture not only the acoustic costs but also the linguistic costs and in-
terdependence of these costs by modifying the cost function directly
depending on the arc variable aj1 . We modified this cost function
so that the parameters depend on the arc, not the HMM-states anno-
tated to the arc, and introduced a corrective term for the transition
cost. By introducing these modifications, the unified cost function
can be defined as follows:

g(aj1 ;X) = γaj1
+

T ′[aj ]∑
τ=T [aj ]

((
αaj1

)T

h(L)(xτ ) + βaj1

)
, (5)

where γaj1
is a corrective term for the arc weight W [aj1 ]. It should

be noted that the unified cost function introduces an untied parameter
representation (αaj1

, βaj1
) that is tied with the HMM-state variable

I[aj1 ] as w(L+1)

I[aj1
] , b

(L+1)

I[aj1
] in the original acoustic cost function (Eq.

(4)). By optimizing the parameters Λ
def
= {αaj1

, βaj1
, γaj1

|∀aj1}
discriminatively, we can perform the overall discriminative opti-
mization of the speech recognizers. Even though the unified cost
function depends only on the arc variable of the first WFST D(1) in
the on-the-fly composition chain D(1) ◦ D(2) ◦ · · · , the proposed
method is capable of optimizing the linguistic aspects of the recog-
nizer by designing the chain so that the first WFST D(1) expresses
a sufficiently rich structure. In the following experiments, we used a
WFST composed of hidden Markov models, triphone context mod-
els, pronunciation lexicon models, and unigram language models as
D(1), and trigram language models as D(2).

Since the unified cost function is a sum of the frame syn-
chronous term (αaj1

)Th(L)(xτ ) and the arc synchronous term
γaj1

, the actual decoding can be performed without fixing the
alignment T [aj1 ], T

′[aj1 ]. Therefore, the outputs of the proposed
structured classifier can be computed by using conventional WFST-
based decoding techniques. We call this structured classifier as
“WFST-DNN” in the following sections.

3. TRAINING WFST-DNN MODELS

Several sequential training criteria can be used with the proposed
method. In this paper, we adopt and describe two training criteria
based on the maximum mutual information (MMI) criterion; boosted
MMI (bMMI) and differenced MMI (dMMI). Hereafter, we refer to
the ith observation vector sequence in the training dataset as X(i),
the ith transcription represented in WFST as T (i), and the ith ora-
cle arc sequence as a(i). The oracle arc sequences are computed as
follows:

a(i) = argmax
a∈(D◦T (i))

P (a|X,Λ′) (6)

where Λ′ is the initial value of the optimization. The initial value
Λ′ = {α′

aj1
, β′

aj1
, γ′

aj1
|∀aj1} is taken from an optimized DNN

system as follows:

α′
aj1

= w
(L+1)

I[aj1
] , β

′
aj1

= b
(L+1)

I[aj1
] , γ

′
aj1

= 0, (7)

where w
(L)

I[aj1
] and b

(L)

I[aj1
] are the corresponding parameters in the

DNN system, and the corrective term for arc weights γ′
aj1

is initial-

ized by 0. Furthermore, we obtained lattices L(i) corresponding to
each observation sequence X(i) by using the DNN system. Taking
initial values from the optimized DNNs is important to ensure the
validity of competing hypotheses in the lattices. The DNNs used in
this study are optimized by using generative pretraining based on the
contrastive divergence method, and frame-wise discriminative train-
ing based on stochastic gradient descent.

The first criterion we adopted for training the WFST-DNN is the
boosted MMI (bMMI) criterion, which is commonly used to devise
a fine error measure in MMI [12]. The objective function of bMMI
is defined with a hyperparameter σ, as follows:

F bMMI
σ (Λ) =

∑
n

log
exp

{
−Ω

(
X(i),a(i)

)}
∑

a′∈L(i) exp
{
−Ω

(
X(i),a′

)
+ σE(a(i),a′)

} ,
(8)

where the total cost function Ω(X(i),a) is defined as follows:

Ω
(
X(i),a

)
=

∑
n

−ω(an;X
(i)). (9)

7630



It should be noted that Ω also depends on the parameter Λ since
we use the unified cost function as Eq. (5). Here, E(a(i),a′) is a
measure of the errors included in the hypothesis a′. In this paper,
we use the transition error count, which is computed by counting
the number of frames that produce an erroneous WFST transition
[7], as the measure of the errors. The hyperparameter σ is used to
adjust the impact of the error measure, which is usually tuned by
performing validation on a development dataset. By setting σ = 0,
the bMMI objective function is equivalent to that of MMI. One of the
advantages of using bMMI is that the objective function is convex.

The differenced MMI (dMMI) criterion is a discriminative cri-
terion that generalizes the bMMI, minimum phone error (MPE) [13],
and other discriminative criteria [14]. The objective function of
dMMI is defined with hyperparameters σ1, σ2, as follows:

F dMMI
σ1,σ2

(Λ) =
(
F bMMI
σ2

(Λ)− F bMMI
σ1

(Λ)
)
/ (σ2 − σ1) . (10)

This objective function converges to the MPE objective function in
the limit of σ1 → −0, σ2 → +0. Furthermore, this objective func-
tion also converges to the bMMI objective function with the hyper-
parameter σ in the limit of σ1 → −∞, σ2 → σ.

In the following experiments, we introduced L2-regularization
terms to the above basic objective functions, as follows:

F̃ (Λ) = F (Λ)− p
∑
aj1

||αaj1
||22 − q

∑
aj1

||βaj1
||22 − r

∑
aj1

||γaj1
||22

(11)

where F (Λ) is one of the above-mentioned objective functions
(dMMI or bMMI).

The parameter Λ with respect to these objective functions can
be optimized by adopting an arbitrary gradient-based optimization
method. The gradient vector of the parameters with respect to the
bMMI objective function can be computed by using the lattice-
based forward-backward algorithm, and that of the dMMI objective
function can be obtained by computing the difference between two
bMMI gradient vectors.

4. EXPERIMENTS

We conducted continuous speech recognition experiments to eval-
uate the efficiency of our proposed approach in LVCSR tasks. We
applied the proposed method to the MIT-OCW/World lecture recog-
nition task [15], and evaluated the WERs. The details of the corpus
we used are provided in Table 1.

In the experiments, 12 Mel-frequency cepstral coefficients
(MFCCs) and the logarithmic energy were extracted and augmented
by their derivatives and accelerations. Furthermore, 11 consecutive
frames of extracted MFCC feature vectors were concatenated to
form input vectors for DNNs. The number of clustered HMM states
and the number of mixture components per state were 2,565 and
32, respectively, as determined using variational Bayesian model
clustering [16]. A speech recognizer with GMMs was optimized by

Table 1. MIT-OCW/World lecture recognition task
Training Development Evaluation

# utterances 55,763 726 6,989
Duration 101h 0.9h 7.8h
# lexicon words 44,485
# running words 1,128,169 9,514 72,159

using the dMMI training procedure [14] to compute the initial state
alignment for DNN training.

We constructed a basic DNN system with 8 hidden layers each
of which has 2048 hidden units. The language model scale factor (c
in Eq. (3)) was fixed at 8.0 for all DNN-based systems (including
WFST-DNN), which was determined in order to minimize the WERs
on the development dataset with this basic DNN acoustic model.
Moreover, to improve the computational efficiency of the WFST-
DNN system, we also prepared a DNN with a “bottleneck layer”
(DNN-BN). The DNN-BN system had 8 hidden layers with 2048
hidden units and 1 hidden layer, called a “bottleneck layer”, with
512 hidden units located adjacent to the output layer of the DNNs.
Although the number of total parameters was reduced by introducing
this bottleneck layer, we observed that the WERs on the development
dataset were reduced from 28.7 to 28.3.

The decoding network was constructed as D = D(1) ◦ D(2)

by using an efficient on-the-fly composition [17]. The first WFST
D(1) = Opt(Opt(H ◦ C) ◦ Opt(L ◦ G(1))), where Opt(.) was
the WFST optimization operator, was constructed by statically com-
posing hidden Markov models H, triphone context models C, pro-
nunciation lexicon models L, and unigram language models G(1).
The second WFST D(2) = G(2,3) was a trigram language model
normalized by unigram probabilities that was estimated by using a
maximum likelihood procedure and the Kneser-Ney smoothing tech-
nique [18]. The numbers of arcs in D(1) and D(2) were 236,228 and
4,946,612, respectively. Since the first WFST D(1) had 234,838 arcs
that had a non-epsilon input symbol, the total number of optimizable
parameters in the WFST-DNNs was 234838×(512+1)+236228 =
120708122.

We used the Rprop method [19] to optimize parameter Λ since
this method can be effectively performed with grid computers. With
100 parallel computation threads, the computation time required to
compute a single iteration was around 10 minutes, and optimiza-
tions typically converged within 15 steps. We fixed the regulariza-
tion terms in Eq. (11) as p = 0.0002, q = 0, r = 0 since the setting
p = 0.0002, q = 0 is commonly used to train DNNs, and r = 0
would be appropriate for avoiding underfitting.

Figs. 1 and 2 show the WERs on the development dataset as
functions of the numbers of iterations in the optimization of DNN-
WFST. We observed that all settings successfully reduced the WERs
from the initial parameters taken from the DNN-BN systems if
the optimization was stopped with appropriate timing. Thus, it is
suggested that the expanded representation is effective for perform-
ing improved classification. The optimal numbers of iterations of
WFST-DNNs used in the following experiments were selected to
minimize the WERs in Figs 1 and 2.

Table 2 shows a comparison of the training objective functions
and the hyper-parameters. From the table, we confirmed that the
hyperparameters σ, σ1, σ2 that minimized the WER on the develop-
ment dataset also produced a smaller WER on the evaluation dataset
even if the development dataset used in the experiments was not very
large. In addition, we also confirmed that the choice of the training
criteria was not very sensitive, which is similar to the previous ex-
periments with GMM-based WFST structured classifiers [7], even
though the choice of hyperparameters is crucial. Although we could
not find any significant difference between bMMI and dMMI in the
development dataset experiments, we picked bMMI with σ = 2 as
the best configuration since bMMI was slightly better than dMMI
(the numbers of word errors differed by just 2).

Table 3 summarizes the final results obtained in the experiments.
WFST-GMM in the table is a WFST-based structured classifier that
uses the raw MFCCs and GMM log-likelihoods as features where
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Fig. 1. WERs on the development dataset as functions of the
numbers of iterations with bMMI.
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Fig. 2. WERs on the development dataset as functions of the
numbers of iterations with dMMI.

WFST-DNNs use DNN-based features. These results shows that
introducing WFST-based structured classification successfully re-
duced the WERs with both the WFST-GMMs and WFST-DNNs.
However, the relative gain of WFST-DNN was bigger than that of the
WFST-GMM. This might be attributed to the feature dimensionality.
It seemed that the proposed method successfully leveraged the high-
dimensional DNN-based features without suffering from overfitting.
Finally, we reduced the WERs by 27% by introducing WFST-DNN
structured classifiers into the GMM (dMMI) speech recognizers. We
confirmed that the WFST-DNNs reduced the WER even compared
with that of the strong DNN-BN acoustic models; an 8.0 % WER
reduction was achieved by introducing structured classifiers into the
DNN-BN systems.

We also measured real-time factors (RTFs) to verify the compu-
tational complexity. With the software we used, the acoustic score
computation in the DNN-BN systems, and bottleneck feature h(.)

Table 2. Comparison of WERs obtained by varying training objec-
tive function and hyperparameters

Obj. Func. σ Dev. [%] Eval. [%]
bMMI 0.0 27.4 21.8
bMMI 1.0 26.8 20.7
bMMI 2.0 26.3 20.6
bMMI 4.0 27.4 21.9
dMMI (−2−4, 2−4) 27.3 21.6
dMMI (−1.0, 1.0) 26.7 20.7
dMMI (−2.0, 2.0) 26.3 20.7
dMMI (−4.0, 4.0) 27.5 21.9

Table 3. WERs on the evaluation dataset and relative error reduction
rates (Rel.) from dMMI

Methods WER [%] Rel. [%]
GMM (ML) 32.6 -16.4

GMM (dMMI) [14] 28.2 –
WFST-GMM [7] 27.1 3.2

DNN 22.7 19.5
DNN-BN 22.4 20.6

WFST-DNN 20.6 27.0

computation in the WFST-DNN systems were accelerated by using
graphics processing units (GPUs). The RTFs observed with this soft-
ware were 0.48x in the DNN-BN systems, and 1.12x in the WFST-
DNN systems. Thanks to the GPU-based acceleration, the compu-
tational time was still acceptable even if it was degraded when com-
pared with a DNN-BN. It might be possible to accelerate WFST-
DNN computation further by leveraging GPUs to compute the cost
function directly, not simply the output of the hidden layers.

5. CONCLUSION

In this paper, we proposed a method for large vocabulary continu-
ous speech recognition (LVCSR) with structured classifier based on
weighted finite-state transducer (WFST) and deep neural network
(DNN) features. With the proposed method, features extracted from
the bottleneck layers of DNNs are classified by parameter vectors
that are independently optimized for each WFST arc. Thanks to the
lexical context information represented in the WFST arcs, the pro-
posed method yields a similar effect to that of whole-word acoustic
models by only requiring few computational resources. The pro-
posed classifier was confirmed to be effective even in large vocabu-
lary continuous speech recognition experiments. Furthermore, the
actual time required to process the inputs was not prohibitive by
leveraging graphic processing units.

Future work will include an optimization of all DNN param-
eters. Even though it had been considered computationally pro-
hibitive, it was recently shown that sequential DNN training can be
efficiently parallelized by using Hessian-free optimization methods
[20, 21]. Moreover, using more expressive speech features is also
important. For example, several studies have suggested that the use
of the logarithmic outputs of Mel filterbanks with a longer context
window is an efficient way to find a precise DNN. Since the proposed
method can also be viewed as a computationally efficient variant of
whole-word HMMs, the use of longer context windows might be
effective for capturing the long-term temporal dependency of acous-
tic observations. Even though the proposed method was developed
for automatic speech recognition, its application to other domains
is also promising since a WFST constitutes a common framework
for several application fields such as speech summarization, speech
translation, and dialogue systems.
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