
UNDERSTANDING THE DROPOUT STRATEGY AND ANALYZING
ITS EFFECTIVENESS ON LVCSR

Jie Li, Xiaorui Wang, Bo Xu

Interactive Digital Media Technology Research Center,
Institute of Automation, Chinese Academy of Sciences,

Beijing, P.R.China
{jie.li, xiaorui.wang, xubo}@ia.ac.cn

ABSTRACT

The work by Hinton et al shows that the dropout strategy can great-
ly improve the performance of neural networks as well as reduc-
ing the influence of over-fitting. Nevertheless, there is still not a
more detailed study on this strategy. In addition, the effectiveness
of dropout on the task of LVCSR has not been analyzed. In this
paper, we attempt to make a further discussion on the dropout strat-
egy. The impacts on performance of different dropout probabilities
for phone recognition task are experimented on TIMIT. To get an
in-depth understanding of dropout, experiments of dropout testing
are designed from the perspective of model averaging. The effec-
tiveness of dropout is analyzed on a LVCSR task. Results show
that the method of dropout fine-tuning combined with standard back-
propagation gives significant performance improvements.

Index Terms— dropout, deep neural networks, LVCSR

1. INTRODUCTION

The structure of Hidden Markov Models (HMMs) with state-
dependent Gaussian mixture models (GMMs) has dominated the
field of acoustic modeling during the past few decades. Until recent-
ly, noteworthy performance improvements have been made by using
Deep Neural Networks (DNNs) to classify the acoustic features
into pre-defined HMM-states [1, 2, 3]. Based on the work [4], the
authors of [5] present a 20% relative reduction in word error rate
comparing with a discriminatively trained HMM-GMM model with
MPE criteria.

The specific way of training DNNs proposed by Hinton [6] con-
tains two procedures, one is pre-training, and the other is fine-tuning.
Pre-training gives a better starting point in weights space for the op-
timization. When fine-tuning, however, we usually have to use early
stopping to prevent training from over-fitting. In his pioneering pa-
per [7], Hinton shows that if we employ a dropout strategy when
training a neural network, not only can we reduce the influence of
over-fitting greatly, but also improve the performance of the mod-
el significantly. Dropout is executed by randomly omitting each u-
nit with certain probabilities on each training case. The role of the
dropout strategy can be explained in two ways, one is to prevent co-
adaptations of the units, and the other is to average the predictions
of many different networks.

This work was supported by 863 program of China
(No.2011AA01A207), National Science and Technology Pillar Pro-
gram of China (2011BAK05B06), and Tsinghua - Tencent Joint Laboratory
for Internet Innovation Technology.

In this paper, we attempt to do a more detailed study on the
dropout strategy. The influences of different dropout probabilities
on performance are first analyzed. We then try to show the va-
lidity of dropout from the view of model averaging by several ex-
periments called dropout testing, which employ dropout during the
testing process, just as the name implies. At last, the effectiveness
of dropout training is investigated in a large vocabulary continuous
speech recognition task. To our knowledge, it is the first time the
strategy is used on this task.

The rest of this paper is organized as follows. In section 2, t-
wo different perspectives of understanding the dropout strategy are
discussed. Section 3 presents the implementation method of dropout
fine-tuning and dropout testing in detail. We report our experimental
results in section 4 and provide our conclusions in section 5. This
paper ends at section 6 which describes the relations to prior work.

2. UNDERSTANDING DROPOUT

According to the work by Hinton et al [7], the dropout strategy can
be interpreted from two perspectives. The first is that we can mitigate
the influence of over-fitting by using dropout to prevent complex co-
adaptations of hidden units on the training data. If a hidden unit
knows clearly and definitely who its collaborative workers are, it
can adapt to them on the training data nicely. But these complex co-
adaptations and symbioses are likely to go wrong on new test data.
However, if a hidden unit has to work well with many different sets
of co-workers, it will be more dependent on itself rather than relying
on some specific combinations of hidden units. As a result, it is more
likely to do something that is not only individually useful, but also
marginally useful.

The other is that we can treat it as a very efficient way to per-
form model averaging with neural networks. As a frequently-used
method to improve generalization, model averaging is most often
used with models such as decision trees because the corresponding
training and testing are efficient and straightforward. If we apply
model averaging for neural networks by the conventional method, it
will be computationally expensive during both training and testing
since we have to train many different networks and average the pre-
dictions of all these networks when testing. Dropout strategy makes
it possible to train plenty of different networks in a reasonable time.
With dropout, each time we present a training case, we are actually
sampling from a huge number of different architectures randomly.

At test time, we use the network that contains all of the hidden
units, but with their outgoing weights halved due to the fact that only
half of them are used during training (if 50% dropout is carried out
when fine-tuning). This network is called ”mean network”, which is

7614978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

a pretty good approximation to averaging the predictions of all the
dropped out models when the network contains more than one hid-
den layer. For single hidden layer network with a ”soft-max” output
layer, using the ”mean network” is exactly equivalent to taking the
geometric mean of the probability distribution over labels predict-
ed by all 2N possible networks, where N represents the number of
hidden units.

In this paper, several experiments are designed from the perspec-
tive of model averaging to obtain a more in-depth understanding of
the dropout strategy.

3. IMPLEMENTATION DETAILS

We apply dropout after the generative pre-training is done, that is,
the pre-trained network is fine-tuned with dropout back-propagation,
as opposed to standard back-propagation. After dropout fine-tuning,
dropout method is integrated with testing, which experimentally
shows that the reason for the validity of dropout strategy lies in
model averaging. In this section, we will introduce the implementa-
tion method of dropout fine-tuning and dropout testing in detail.

3.1. Dropout fine-tuning

The dropout strategy can be applied not only for hidden layers but
also for the input layer [7], which is already used by “de-noising
auto-encoders” developed by Yoshua Bengio’s group [8, 9]. In this
paper, we only make use of hidden layer dropout.

For a network with L − 1 hidden layers and a soft-max output
layer, the forward pass of dropout fine-tuning can be expressed as

El [hl|vl] = σ
(
WT

l · vl + bl

)
1 ≤ l ≤ L− 1 (1)

PL (s|vL) = softmax
(
WT

L · vL + bL

)
(2)

vl = dropout(vl, pdrop), 2 ≤ l ≤ L (3)

with weights matrices WT
l and bias vectors bl , where Nl is the

number of units in layer l, El [hl|vl] means the conditional expec-
tation of hidden binary vectors hl given input vectors vl, σ denotes
the element-wise sigmoid, σ (x) =

(
1 + e−x

)−1.
Given input feature vector o , we set v1 = o and compute

El [hl|vl] according to formula (1) which will be treated as input
vl+1 to the next layer. Before the next calculation using vl+1 ,
however, we should pass it through formula (3) to perform dropout,
which implies that the input vector of each hidden layer and the
output layer should be dropped out according a probability constant
pdrop (except for the first hidden layer, since no dropout is performed
on the network input).

The implementation method of formula (3) is as follows: for
each training case, a vector of random numbers between 0 and 1
which subject to a uniform distribution is generated. The dimen-
sionality of the random vector is equal to that of input vector vl .
If a component in the random vector is less than pdrop , the corre-
sponding value of vector vl will be set to 0.

The constant pdrop represents the probability that one unit would
to be omitted. Different constants are tested in this work, and results
are given in the next section. During the backward pass of fine-
tuning, the weights which associate with units that are dropped out
should not participate in gradient computation, that is, the gradient
due to those units should be 0.

3.2. Dropout testing

Dropout testing means that instead of using “mean network” when
testing, we use the “original network” of which units of each hidden
layer are randomly omitted according a probability constant pdrop
and outgoing weights are not multiplied with the compensation prob-
ability 1 − pdrop . Two kinds of dropout testing are examined in
this work, one is called “network-output averaging” and the other is
“layer-wise averaging”. The meaning of network-output averaging
is that for each utterance in test corpus, we perform dropout feed for-
ward according to formula (1) (2) (3) for certain times and average
the class posterior probabilities (output of network) obtained from
these testings. Averaging is performed according to:

P̄L (s|vL) = 1
T

T∑
i=1

P
(i)
L (s|vL)

= 1
T

T∑
i=1

softmax(i)
(
WT

L · vL + bL

) (4)

where P (i)
L (s|vL) is the posterior probability of class s obtained

from the i-th testing, T denotes how many times of testing we would
like to do, and P̄L (s|vL) is the averaged posterior probability which
is to be used for decoding.

To do layer-wise averaging, we replace formula (3) with

vl
(i) = dropout(i)(vl, pdrop), 2 ≤ l ≤ L, 1 ≤ i ≤ T (5)

where vl
(i) is the result vector of the i-th dropout processing on vl.

Two forms of layer-wise averaging are tested namely “layer-
input averaging” and “layer-output averaging” respectively. The
layer-input averaging is performed according to

v̄l =
1

T

T∑
i=1

vl
(i), 2 ≤ l ≤ L (6)

which implies that for input vector vl of each hidden layer (except
for the first hidden layer) and the output layer, dropout method is
executed for certain times T and the results are averaged to get v̄l

which will be sent to the next layer as input vector.
For the form of layer-output averaging, the procedure is as fol-

lows. After dropout is performed according to formula (5) for T
times, T different input vectors vl

(i) are obtained, each of which
will be separately sent to the next layer and be used to compute
El [hl|vl] (formula (1), for hidden layers except the first one) or
PL (s|vL) (formula (2), for the output layer). Then, for hidden lay-
ers (except the first one), these T layer-output vectors are averaged
according to formula (7) and sent to the next layer. As for the output
layer, averaging is performed according to formula (8).

El [hl|vl] = 1
T

T∑
i=1

El

[
hl|v(i)

l

]
= 1

T

T∑
i=1

σ
(
WT

l · v
(i)
l + bl

) (7)

PL (s|vL) = 1
T

T∑
i=1

PL

(
s|v(i)

L

)
= 1

T

T∑
i=1

softmax
(
WL · v(i)

L + bL

) (8)

One thing we need to pay attention to is that the dropout prob-
ability (pdrop) used for testing should be consistent with that used
during dropout fine-tuning.

7615

4. EXPERIMENTAL RESULTS

Following the work [7], we first apply dropout fine-tuning on TIMIT
dataset to evaluate its performance on the task of phone recognition.
The impacts on the performance with different dropout probabilities
are analyzed in this experiment. Next, the experiments of dropout
testing are conducted to obtain a better understanding of the dropout
strategy. In the end, the effectiveness of dropout fine-tuning on large
vocabulary continuous speech recognition (LVCSR) is examined.

Fig. 1. CV accuracy [%] curves of different dropout probabilities.
For 10% dropout, we run the model for 150 epochs. For other values
of dropout probability, the model is run for 300 epochs.

Table 1. Core test PER [%] of different dropout probabilities.

pdrop 10% 20% 30% 40% 50% 70%
PER 22.64 22.51 21.47 21.10 21.37 24.82

Baseline 22.52

4.1. Dropout fine-tuning on TIMIT

For phone recognition experiments on TIMIT corpus, a developmen-
t set of 50 speakers is selected from the complete test set, and the
24-speaker core test set is used for evaluation. The deep neural net-
work used in these experiments has 4 fully-connected hidden layers,
each of which contains 2048 units, and the output layer has 183 soft-
max units. The conventional 13-dimension MFCC features, along
with their first and second derivatives are used. Cepstral mean and
variance normalization is performed on per utterance case. For ex-
periments reported below, 11 consecutive frames are used as input
features of the network. Mini-batches of size 128 are applied for
both pre-training and dropout fine-tuning.

Dropout back-propagation algorithm is used to fine-tune the
neural network with weights initialized by pre-trained RBMs.
Learning rate is applied to total gradient of a mini-batch with a
constant value of 0.008. To get baseline result, the network is
fine-tuned using standard back-propagation.

To analyze effects of different dropout probabilities, we employ
10%, 20%, 30%, 40%, 50% and 70% dropout fine-tuning separately.
CV accuracy curves are presented in Figure 1 and PER results are
given in Table 1.

Figure 1 shows that with the increase of dropout probability, the
CV accuracy curve needs more epochs to converge. However, the
convergent point of these curves tend to be higher (except for 70%
dropout). From Table 1, we can see for 30%, 40% and 50% dropout,
the performance improvements are remarkable. Comparing with the
baseline result, a relative PER reduction of 6.3% is achieved by 40%
dropout. The reason for the poor performance of 70% dropout is that
the learning capacity of the model degrades since too many units are
omitted during training.

Fig. 2. Core test PER [%] as a function of test number for two kinds
of averaging.

4.2. Dropout testing on TIMIT

All the three experiments of dropout testing are conducted following
the description in section 3.2 with test number T varying from 1 to
100. According to the results in section 4.1, 40% dropout gives the
best performance, thus, pdrop is 40% for all experiments reported
below. In the experiments of this section, we use the same model
which has the lowest test PER (21.10%) in section 4.1.

For the purpose of reducing interference due to randomness,
these experiments are conducted for three times separately and the
results are averaged to obtain three final test PER curves which are
presented in Figure 2.

Comparing with the two curves of layer-wise averaging, the
curve obtained from network-output averaging converges to mean
network PER (21.10%) much more slowly. This is because network-
output averaging is just whole network averaging, while layer-wise
averaging can be viewed as a kind of accumulation of single layer
model averaging. If we perform layer-wise averaging with a test
number of T , we actually have done model averaging for T l times,
where l is the number of layers on which dropout is performed. As
for this paper, l is 4 (three hidden layers plus the output layer).

Figure 2 also shows that layer-input averaging converges to
mean network PER a lot faster than layer-output averaging. This
is due to the consistency of layer-input averaging with the forward
pass of dropout training. For one mini-batch in the training corpus,
it has been sent into the network for a certain number of times, and
the number is just the iteration epochs of the training procedure.
When the test number T goes to infinity, layer-input averaging is
equivalent to mean network.

7616

Fig. 3. CV accuracy [%] curve of dropout fine-tuning.

Table 2. CV accuracy [%] of different models.

Standard BP Dropout Dropout+SBP
CV acc(%) 46.36 46.45 49.81

From Figure 2 we can see that after about 25 times of layer-
input averaging, the PER curve already comes near mean network
PER (21.10%). This illustrates using “mean network” when testing
is actually doing layer-input averaging, and the validity of dropout
strategy takes its root in model averaging.

4.3. Dropout fine-tuning on LVCSR

The effectiveness of dropout strategy on the task of LVCSR is tested
and verified in this section.

4.3.1. Configuration

A cross-word triphone GMM-HMM model is first trained with dis-
criminative criteria (bMMI), using 1000 hours of Mandarin data.
This model serves as a baseline system to generate labels at the frame
level. All experiments are conducted using 42 dimension features
which consist of 13-dimensional PLP and pitch appended with the
first and second order derivatives.

A DNN model which contains 5 hidden layers with 2048 units
in each layer and an output layer with 10217 senones is trained on
a subset (about 70h) of above dataset. Concatenations of 11 frames
are used as input of our network. The baseline result of the DNN
model is obtained by standard back-propagation algorithm.

To evaluate the performance, we use two individual test set-
s namely “clean7k” and “noise360” which are collected by mobile
microphone under clean and noise environments, respectively.

4.3.2. Results

The network with weights initialized by pre-trained RBMs is first
fine-tuned for 120 epochs using dropout back-propagation with
pdrop = 40%, and the CV accuracy curve is presented in Figure
3. We also train the same network using standard back-propagation
after 100 iterations of dropout fine-tuning. This model is called

Table 3. CER [%] of different models.

CER(%)
clean7K noise360

GMM bMMI 11.30 36.56
Standard BP 10.34 30.30

Dropout 11.64 34.13
Dropout+SBP 9.76 29.70

“Dropout+SBP”. CV accuracy and test CER is given in Table 2
and Table 3. In order to accelerate the training process, we use the
method of ASGD [10].

Unfortunately, comparing with standard back-propagation, the
dropout strategy does not perform better on both of these two test
sets, though the CV accuracy is about equal. If dropout is turned
off during the last few iterations of training, the CV accuracy can be
promoted from 46.36% to 49.81%, and the relative CER reduction is
5.6% and 2.0% for “clean7k” and “noise360” test sets respectively.
However, the performance improvements are not so obvious as our
expectations. We will do more research on it in the future.

5. CONCLUSION

This paper presents a further study on the dropout strategy. For
the task of phone recognition, we perform dropout fine-tuning on
TIMIT with six different dropout probabilities. Experimental result-
s show that with the increase of probability, the convergence speed
of CV accuracy curve becomes slower, and more extreme probabil-
ity (greater than 50%) tends to be worse. For the network used in
this paper, 40% dropout achieves the best performance on this task,
which is a relative PER reduction of 6.3% compared with baseline
result. We design experiments of dropout testing aiming to get a
deeper understanding of dropout strategy and verifying the validity
of dropout strategy in the view of model averaging. Figure 2 demon-
strates using “mean network” is actually doing layer-input averag-
ing, and the validity of dropout strategy lies in model averaging. In
the end, over 70 hours of training data is used to analyze the effec-
tiveness of dropout on the task of LVCSR. It turns out that if we fine-
tune the network without dropout after certain iterations of dropout
fine-tuning, the performance improvement is significant.

6. RELATION TO PRIOR WORK

Dropout strategy is first proposed and examined on different bench-
mark datasets in the pioneering work [7]. Based on that, we make
a further discussion on the dropout strategy, including what the in-
fluences of different dropout probabilities are and how to understand
dropout in the view of model averaging. What’s more, we analyze
the effectiveness of this method on the task of LVCSR for the first
time.

7. REFERENCES

[1] Frank Seide, Gang Li, and Dong Yu, “Conversational Speech
Transcription Using Context-Dependent Deep Neural Net-
works,” in Interspeech, 2011, pp. 437–440.

[2] Navdeep Jaitly, Patrick Nguyen, Andrew Senior, and Vincent
Vanhoucke, “Application of Pretrained Deep Neural Network-
s to Large Vocabulary Speech Recognition,” in Interspeech,
2012.

7617

[3] Abdel rahman Mohamed, Tara N. Sainath, George Dahl, Bhu-
vana Ramabhadran, Geoffrey E. Hinton, and Michael A. Piche-
ny, “Deep Belief Networks using discriminative features for
phone recognition,” in ICASSP, 2011, pp. 5060–5063.

[4] Abdel rahman Mohamed, George E. Dahl, and Geoffrey Hin-
ton, “Acoustic Modeling Using Deep Belief Networks,” IEEE
Transactions on Audio, Speech and Language Processing, vol.
20, pp. 14–22, 2012.

[5] George E. Dahl, Dong Yu, Li Deng, and Alex Acero, “Context-
Dependent Pre-Trained Deep Neural Networks for Large-
Vocabulary Speech Recognition,” IEEE Transactions on Au-
dio, Speech and Language Processing, vol. 20, pp. 30–42,
2012.

[6] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, “A
Fast Learning Algorithm for Deep Belief Nets,” Neural Com-
putation, vol. 18, pp. 1527–1554, 2006.

[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Improving neural net-
works by preventing co-adaptation of feature detectors,” CoR-
R, vol. abs/1207.0580, 2012.

[8] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre
antoine Manzagol, “Extracting and composing robust features
with denoising autoencoders,” in International Conference on
Machine Learning, 2008, pp. 1096–1103.

[9] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Ben-
gio, and Pierre-Antoine Manzagol, “Stacked Denoising Au-
toencoders: Learning Useful Representations in a Deep Net-
work with a Local Denoising Criterion,” Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[10] Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, and
Bo Xu, “Asynchronous Stochastic Gradient Descent for DNN
Training,” in ICASSP, 2013 (to appear).

7618

