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ABSTRACT

The Kullback-Leibler (KL) divergence is often used for a similarity
comparison between two Hidden Markov models (HMMs). How-
ever, there is no closed form expression for computing the KL di-
vergence between HMMs, and it can only be approximated. In this
paper, we propose two novel methods for approximating the KL di-
vergence between the left-to-right transient HMMs. The first method
is a product approximation which can be calculated recursively with-
out introducing extra parameters. The second method is based on the
upper and lower bounds of KL divergence, and the mean of these
bounds provides an available approximation of the divergence. We
demonstrate the effectiveness of the proposed methods through ex-
periments including the deviations to the numerical approximation
and the task of predicting the confusability of phone pairs. Experi-
mental resuls show that the proposed product approximation is com-
parable with the current variational approximation, and the proposed
approximation based on bounds performs better than current meth-
ods in the experiments.

Index Terms— Kullback-Leibler divergence, Hidden Markov
model, automatic speech recognition, speech processing.

1. INTRODUCTION

Hidden Markov model (HMM) has been successfully used as a pow-
erful tool in speech recognition and signal processing. The reasons
for this success are due to its effectiveness in modeling significant
and complex time series with a small set of parameters, and there
are efficient estimation techniques to train and evaluate these param-
eters for the given data set.

In the problems of clustering or classification, it is often nec-
essary to compare different HMMs through a suitable distance or
similarity measure. The Kullback-Leibler (KL) divergence [1], also
known as the relative entropy between two probability density dis-
tributions in statistics, has been used as a measure of similarity be-
tween two HMMs. Since there is no closed-form expression of the
KL divergence for the HMMs, the Monte Carlo simulation is em-
ployed to numerically approximate the KL divergence [2]. Although
the Monte Carlo approximation is easy to implement, this method is
slow and inefficient. To overcome this problem, several other meth-
ods are used to approximate the KL divergence between HMMs. Re-
cent methods include the probabilistic evaluation of the match be-
tween every pair of states [3] and the HMM stationary cumulative
distribution [4], but these methods are only employed for the HMMs
with stationary distribution. For the aspects of automatic speech
recognition (ASR), many approximations of the KL divergence are
explored between the left-to-right transient HMMs [5, 6, 7]. The

This research is supported by the National Natural Science Foundation
of China (No. 91120303) and the Ph.D. Programs Foundation of Ministry of
Education of China (No. 20112302110042).

method of average divergence distance [5] is based on the transient
behavior, but no rigorous relationship with the divergence is stipu-
lated for this method. The work in [6] provides the divergence with
only an upper bound. In [7], a variational approximation is derived
from the variational methods for mixture models, however, this ap-
proximation employs only single Gaussian to model the observation
probability at each HMM state for shorthand. Furthermore, the vari-
ational approximation depends on a group of variational parameters,
which need estimating by a recursive algorithm.

In this paper, we propose two novel methods for approximating
the KL divergence between the left-to-right transient HMMs. The
first method is a product approximation which can be calculated re-
cursively without extra parameters. The second method is derived
from the upper and lower bounds of KL divergence, and the mean of
these bounds provides an approximation of KL divergence. While
our work formulates the KL divergence with the same HMM defi-
nitions as [7], and extends the variational approximation to the case
of HMMs with Gaussian mixture models (GMMs) modelling the
observation probabilities at states. Moreover, our work can be con-
sidered as the expansions of the methods for approximating the KL
divergence between GMMs in [8] and [9]. We finally confirm the
effectiveness of the proposed methods by experiments.

2. KULLBACK-LEIBLER DIVERGENCE FOR HMMS

The KL divergence can be employed to measure the similarity be-
tween two left-to-right transient HMMs used in ASR. To formulate
the KL divergence, we follow the definitions of HMMs presented
in [7], and this definition method yields a distribution (integrates
to one) over all lengths of observation sequence. Suppose that f
is a left-to-right transient HMM, and it emits an observation se-
quence x1:n of length n. The sequence x1:n can be expressed as
x1:n = (x1, ..., xn), where xt is an observed vector with xt ∈ R

d,
and d is the dimension of the vector. The observation probabil-
ity f (x1:n) assigned to a particular observed sequence x1:n can be
computed as [7]:

f (x1:n) =
∑

a1:n

πa1:n
fa1:n

(x1:n)

=
∑

a1:n

πa1|aI
πaF |an

fa1
(x1)

n
∏

t=2

πat|at−1
fat

(xt) (1)

where a1:n = (a1, ..., an) is the corresponding hidden state se-
quence with n emitting states, and at takes values in the set of emit-
ting states of f . The non-emitting initial and final states are defined
as aI and aF respectively. The probability of state sequence is for-
mulated as a Markov chain πa1:n

= πa1|aI
πaF |an

∏n

t=2
πat|at−1

,
where πa1|aI

and πaF |an
are the initial and final state transitions,

and πat|at−1
is the transition probability. Let fa1:n

(x1:n) be the
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observation probability of x1:n with the hidden state sequence a1:n,
and it can be calculated as the product of the probabilities given by
the states as fa1:n

(x1:n) =
∏n

t=1
fat

(xt). For each state at, GMM
is usually used to model the probability density fat

(x) of observa-
tion x as fat

(x) =
∑

i
cat

i N (x;µat

i ,Σat

i ), where cat

i (
∑

i
cat

i =
1) is the prior probability of mixture component, N (x;µat

i ,Σat

i ) is
a Gaussian with mean µat

i and variance Σat

i .
According to the above definitions, the KL divergence between

two HMMs can be formulated. Let f and g be two left-to-right
transient HMMs, and X be the set of all possible observed se-
quences generated by the HMMs. Thus, X can be expressed as
X = ∪∞

n=1R
n×d = ∪∞

n=1

{

x1:n | xt ∈ R
d, 1 ≤ t ≤ n

}

. Further-
more, let f (x) and g (x) be the probability density functions of a
particular sequence x (x ∈ X) for the HMMs f and g respectively.
The KL divergence between two HMMs is defined as:

D (f ‖ g)
def
=

∫

f (x) log
f (x)

g (x)
dx

=

∞
∑

n=1

∫

f (x1:n) log
f (x1:n)

g (x1:n)
dx1:n (2)

where f (x1:n) is given by Eq. (1), and likewise g (x1:n) is defined
as g (x1:n) =

∑

b1:n
ωb1:ngb1:n (x1:n) with the probability ωb1:n of

state sequence b1:n for HMM g. Thus D (f ‖ g) can be obtained by
separately integrating over sequences of each length and then sum-
ming over the individual results. And it can be decomposed as:

D (f ‖ g) =
∞
∑

n=1

∫

f (x1:n) log
f (x1:n)

g (x1:n)
dx1:n

=
∞
∑

n=1

[ ∫

f (x1:n) log f (x1:n) dx1:n

−

∫

f (x1:n) log g (x1:n) dx1:n

]

=
∞
∑

n=1

[Ln (f ‖ f)− Ln (f ‖ g)] (3)

where Ln (f ‖ g)
def
=

∫

f (x1:n) log g (x1:n) dx1:n. Hence, it
shows that the approximation of D (f ‖ g) can be performed by
approximating Ln (f ‖ g).

3. APPROXIMATIONS OF THE KULLBACK-LEIBLER
DIVERGENCE BETWEEN HMMS

3.1. The variational approximation of the KL divergence

To approximate the KL divergence between two HMMs, a varia-
tional approximation is used in [7]. This method introduces a group
of variational parameters φb1:n|a1:n

(φb1:n|a1:n
≥ 0) in the form of

conditional Markov chain as φb1:n|a1:n

def
= φb1|a1

∏n

t=2
φbt|atbt−1

,
where

∑

b1
φb1|a1

= 1,
∑

bt
φbt|atbt−1

= 1, and
∑

b1:n
φb1:n|a1:n

=

1. And a lower bound of Ln (f ‖ g) is obtained as [7]:

Ln (f ‖ g)

≥
∑

a1:n

πa1:n

∑

b1:n

φb1:n|a1:n
log

ωb1:nexp
(
∑n

t=1
L (fat

‖ gbt)
)

φb1:n|a1:n

(4)

where L (fat
‖ gbt)

def
=

∫

fat
(xt) log gbt (xt) dxt. fat

(xt) and
gbt (xt) are the observation probabilities for the states at and bt

in two HMMs f and g respectively. In [7], only single Gaussian
is employed to model fat

(xt) and gbt (xt) for shorthand. Here,
we extend the observation probabilities to the case of GMMs.
For two GMMs fat

(xt) and gbt (xt), L (fat
‖ gbt) has a lower

bound Lvar (fat
‖ gbt) according to the variational approximation

between two GMMs [8]. Consequently, we get a lower bound
Lvar

n (f ‖ g) for the right part of Eq. (4):

∑

a1:n

πa1:n

∑

b1:n

φb1:n|a1:n
log

ωb1:nexp
(
∑n

t=1
L (fat

‖ gbt)
)

φb1:n|a1:n

≥
∑

a1:n

πa1:n

∑

b1:n

φb1:n|a1:n
log

ωb1:nexp
(
∑n

t=1
Lvar (fat

‖ gbt)
)

φb1:n|a1:n

def
=Lvar

n (f ‖ g) (5)

ThusLvar
n (f ‖ g) is also a lower bound of Ln (f ‖ g). Lvar

n (f ‖ g)
can be maximized with respect to φb1:n|a1:n

through a recursive al-
gorithm [7]. Similarly, a lower bound of Ln (f ‖ f) can also be
obtained as Lvar

n (f ‖ f) with the same method. Then, the vari-
ational approximation Dvar (f ‖ g) for HMMs can be computed
as:

Dvar (f ‖ g) =
∞
∑

n=1

[Lvar
n (f ‖ f)− Lvar

n (f ‖ g)] (6)

And the computation is truncated to a finite series in practice.

3.2. The product approximation of the KL divergence

In this subsection, we propose a product approximation method for
the KL divergence between HMMs, and it is also based on the de-
composition of KL divergence. pf (n) is defined as the probability
of a particular sequence length n for HMM f :

pf (n) =

∫

f (x1:n)dx1:n =

∫

∑

a1:n

πa1:n
fa1:n

(x1:n) dx1:n

=
∑

a1:n

πa1:n
=

∑

a1:n

πa1|aI
πaF |an

n
∏

t=2

πat|at−1
(7)

It can be calculated with a forward or backward recursion. Note that
∫

∑

a1:n

πa1:n

pf (n)
fa1:n

(x1:n) dx1:n = 1 (8)

According to Jensen’s inequality and Eq. (8), an upper bound of
Ln (f ‖ g) is derived as Lprod

n (f ‖ g).

Ln (f ‖ g) =

∫

f (x1:n) log g (x1:n) dx1:n

=

∫

∑

a1:n

πa1:n
fa1:n

(x1:n) log
∑

b1:n

ωb1:ngb1:n (x1:n) dx1:n

=pf (n)

∫

∑

a1:n

πa1:n

pf (n)
fa1:n

(x1:n) log
∑

b1:n

ωb1:ngb1:n (x1:n) dx1:n

≤pf (n) log

∫

∑

a1:n

πa1:n

pf (n)
fa1:n

(x1:n)
∑

b1:n

ωb1:ngb1:n (x1:n) dx1:n

=pf (n)

[

log
∑

a1:n

πa1:n

∑

b1:n

ωb1:n

∫

fa1:n
(x1:n) gb1:n (x1:n) dx1:n

− log pf (n)

]

def
=Lprod

n (f ‖ g) (9)
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In Eq. (9), the product integration is calculated as:

∫

fa1:n
(x1:n) gb1:n (x1:n) dx1:n =

∫ n
∏

t=1

fat
(xt) gbt (xt) dx1:n

=

n
∏

t=1

∫

fat
(x) gbt (x) dx =

n
∏

t=1

I (at, bt) (10)

where I (at, bt)
def
=

∫

fat
(x) gbt (x) dx, and it is used to define the

integration of product between the two observation probabilities at
states at and bt. For two GMMs fat

(x) and gbt (x), the integra-
tion of product I (at, bt) can be given with a closed form expression
described in Appendix.

The accumulation in Eq. (9) can be expressed as Q (a1:n, b1:n):

Q (a1:n, b1:n)

=
∑

a1:n

πa1:n

∑

b1:n

ωb1:n

∫

fa1:n
(x1:n) gb1:n (x1:n) dx1:n

=
∑

a1:n

πa1:n

∑

b1:n

ωb1:n

n
∏

t=1

I (at, bt)

=
∑

a1

πa1|aI

∑

b1

ωb1|bII (a1, b1)

×
∑

a2

πa2|a1

∑

b2

ωb2|b1I (a2, b2)× · · ·

×
∑

an

πan|an−1
πaF |an

∑

bn

ωbn|bn−1
ωbF |bnI (an, bn) (11)

It can be computed recursively by defining Qt (at, bt) as the con-
tribution from earlier states to the current estimate at states at and
bt.

Q1 (a1, b1) = πa1|aI
ωb1|bI (12)

Qt (at, bt) =
∑

at−1

πat|at−1

∑

bt−1

ωbt|bt−1
I (at−1, bt−1)Qt (at−1, bt−1) (13)

The end case is handled as:

Q (a1:n, b1:n)=
∑

an

πaF |an

∑

bn

ωbF |bnI (at, bt)Qn (an, bn) (14)

The sum can be computed recursively by saving intermediate results.
Then, an upper bound Lprod

n (f ‖ g) is computed from Eq. (9)
to Eq. (14) for Ln (f ‖ g) without introducing extra parameters.
Similarly, an upper bound of Ln (f ‖ f) can also be obtained as
Lprod

n (f ‖ f) with the same method. Finally, the product approxi-
mation for HMMs can be calculated as:

Dprod (f ‖ g) =

∞
∑

n=1

[

Lprod
n (f ‖ f)− Lprod

n (f ‖ g)
]

(15)

And the computation is also truncated to a finite series in practice.

3.3. Approximation based on bounds for the KL divergence

In [9], an approximation of the KL divergence between GMMs are
adopted based on the idea that strict bounds can provide an interval in
which the real value of the KL divergence can be found. Motivated
by this idea, we also design an approximation for the divergence
between HMMs based on bounds.

The upper bound of KL divergence is computed by combining
the upper bound of Ln (f ‖ f) and the lower bound of Ln (f ‖ g).

D (f ‖ g) =

∞
∑

n=1

[Ln (f ‖ f)− Ln (f ‖ g)]

≤

∞
∑

n=1

[

Lprod
n (f ‖ f)− Lvar

n (f ‖ g)
]

def
= Dupper (f ‖ g) (16)

The lower bound of KL divergence is obtained by combining the
lower bound of Ln (f ‖ f) and the upper bound of Ln (f ‖ g).

D (f ‖ g) =

∞
∑

n=1

[Ln (f ‖ f)− Ln (f ‖ g)]

≥

∞
∑

n=1

[

Lvar
n (f ‖ f)− Lprod

n (f ‖ g)
]

def
= Dlower (f ‖ g) (17)

It is reasonable to take the “center” of the interval as the approx-
imation. Therefore, the the mean of the two bounds is computed as
the approximation, and it is equal to the mean of Dprod (f ‖ g) and
Dvar (f ‖ g).

Dmean (f ‖ g) =
1

2

[

Dupper (f ‖ g) +Dlower (f ‖ g)
]

=
1

2

[

Dprod (f ‖ g) +Dvar (f ‖ g)
]

(18)

4. EXPERIMENTS

Two parts of experiments are carried out to evaluate the approxi-
mation quality of the KL divergence for comparing the similarity
between transient HMMs. The first part is conducted to analyze the
deviations of the proposed approximations and bounds to the nu-
merical approximation using Monte Carlo simulation, and the sec-
ond part shows the performance of the proposed approximations for
estimating the confusability of phones in speech recognition.

4.1. Experimental data and setup

For experiments, an ASR system is set up for phone recognition task
in continuous speech. The training and test data are both from a man-
darin speech database provided by Chinese National Hi-Tech Project
863. This reading-style database contains the sentences spoken by
166 different native speakers (83 females, 83 males). The training
data set for acoustic model contains 102-hour speech pronounced by
150 speakers (75 females, 75 males). The test set consists of 12-hour
speech from other 16 speakers (8 females, 8 males).

The sample rate of the speech data is 16 kHz. In the front-end,
the length and shift of analysis frame are 25ms and 10ms respec-
tively. The feature used is 12th-ordered Mel-frequency cepstral co-
efficients (MFCCs) and the normalized short-time energy, appending
their first- and second-order derivatives (39-dimensional feature).
The phone set contains 97 phones [10]. The acoustic models are con-
tinuous density HMMs for context-independent monophones, and
they are trained using the maximum likelihood estimation. Each
HMM has 2 non-emission states and 3 emission states with a left-
to-right topology, and the number of Gaussian mixture components
is 8 for each emision state.
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Fig. 1. Histograms of the deviations to the Monte Carlo simulation.

4.2. Deviation analysis

We analyze the deviations of the approximations and bounds to the
numerically approximated divergence using Monte Carlo simula-
tion. For the simulation, a method of sample generation is employed
[2]. More than 4,000,000 sequence samples are generated in order to
get an accurate approximation, and the number of samples generated
for each HMM of phone is proportional to the expected frequency of
that phone in the training data. With these samples, the numerical
approximation of KL divergence as the reference is achieved be-
tween different HMMs from set of the acoustic models, and there
are 97× (97− 1) = 9312 pairs of different HMMs. The deviations
to the references are computed for the approximations and bounds
respectively, and the histograms of the deviations are shown on Fig.
1. As expected, Dlower and Dupper are below and above the refer-
ence. Dvar and Dprod are closer to the reference. Dprod is slightly
under the reference, while Dvar is slightly over-estimates it. Com-
pared with other approximations and bounds, Dmean is shown to be
closer to the reference, with deviations more concentrated near 0.

4.3. Estimation of confusability for phones

In this subsection, the approximation of KL divergence is used to es-
timate the confusability for phones, and this evaluation can measure
the performance of each approximation employed to predict recog-
nition errors [5, 7]. For this purpose, a phone confusion matrix is
constructed for phone recognition error. The entry (i, j) of this ma-
trix is the negative logarithm probability − logE (wi, wj) of substi-
tution error for each phone pair of wi and wj , where E (wi, wj) =
[P (wi|wj) + P (wj |wi)] /2, where P (wi|wj) is the proportion of
utterances for wj that are recognized as wi in the 1-Best result of
the test data. The phone error rate of the ASR system is 31.8%, and
more than 39,000 substitution errors are detected. The other ma-
trix is generated by the proposed approximation of divergence from
acoustic models, and each entry (i, j) of this matrix is the symmet-
ric extension of the approximated divergence between the HMMs of
phones wi and wj . The symmetric extension is computed with the
resistor average symmetrized KL divergence [11]. The absolute row-
correlation coefficient is computed between the rows with the same
suffix in the two matrices, and this coefficient represents the corre-
lation between the two approximations for a model with respect to
all the other models. Finally, the average absolute correlation coeffi-
cient is obtained as a function of the phone frequency in the training
set. The average absolute coefficient with a higher value indicates a
closer correlation. For comparison, the same method is used to cal-
culate the correlation between the confusion matrix and the matrices
given by other approximation methods, such as the average diver-

gence distance (ADD) [5] and the upper bound of Kullback-Leibler
divergence (UBKLD) [6], in all cases considering the symmetric ex-
tensions.

Table 1. The average absolute row-correlation coefficients.

Methods of Average abs. Methods of Average abs.
approximation row-corr. approximation row-corr.

ADD 0.7372 UBKLD 0.7602
Variational 0.8125 Product 0.8018

Mean of bounds 0.8255

In Table 1, the average absolute row-correlation coefficients are
listed between the confusion matrix and the matrices given by the ap-
proximations of divergence. The average absolute row-correlation of
the proposed product approximation is slightly lower than the vari-
ational approximation, but higher than the methods of ADD and
UBKLD. The highest average absolute row-correlation is obtained
by the proposed approximation method based on the two bounds.
Hence, this method is a more accurate indicator of the acoustic con-
fusability for a recognition task compared with all the other methods.

5. CONCLUSION

In this work, two novel methods of approximation have been pro-
posed for the KL divergence between left-to-right transient HMMs.
The first one is the product approximation which can be calculated
recursively without introducing extra parameters, and the second one
is explored based on the upper and lower bounds of the divergence.
To calculate the bounds, the outcomes from both the variational and
product approximation are employed. And the variational approx-
imation is extended for the HMMs which use GMM to model the
observation probability for each state.

The approximation based on bounds is attractive because it of-
fers an effective approach to estimate the real value of the KL di-
vergence with a clearer theoretical motivation. Compared with cur-
rent methods, the approximation based on bounds achieves a better
performance in both the correlation with respect to the numerical
approximation and the prediction of phone error.

6. APPENDIX

If fat
(x) and gbt (x) are two distribution functions both given

by GMM, fat
(x) =

∑

i c
at

i N
(

x;µat

i ,Σat

i

)

and gbt (x) =
∑

j
cbtj N

(

x;µbt
j ,Σbt

j

)

,
∫

fat
(x) gbt (x) dx is given as following:

I (at, bt) =

∫

fat
(x) gbt (x) dx

=

∫

∑

i

cat

i N
(

x;µat

i ,Σat

i

)

∑

j

cbtj N
(

x;µbt
j ,Σbt

j

)

dx

=
∑

i,j

cat

i cbtj

∫

N
(

x;µat

i ,Σat

i

)

N
(

x;µbt
j ,Σbt

j

)

dx (19)

The product integration of two normal Gaussian PDFsN (x;µ1,Σ1)
and N (x;µ2,Σ2) can be calculated by [12]:
∫

N (x;µ1,Σ1)N (x;µ2,Σ2) dx =

|2π(Σ1+Σ2)|
− 1

2 exp

(

−
(µ1−µ2)

T (Σ1+Σ2)
−1(µ1−µ2)

2

)

(20)
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