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ABSTRACT

In this paper, we investigate employment of discriminatively trained

acoustic features modeled by Subspace Gaussian Mixture Models

(SGMMs) for Rich Transcription meeting recognition. More specif-

ically, first, we focus on exploiting various types of complex features

estimated using neural network combined with conventional cepstral

features and modeled by standard HMM/GMMs and SGMMs. Then,

outputs (word sequences) from individual recognizers trained using

different features are also combined on a score-level using ROVER

for the both acoustic modeling techniques. Experimental results

indicate three important findings: (1) SGMMs consistently outper-

form HMM/GMMs (relative improvement on average by about 6%

in terms of WER) when both techniques are exploited on single fea-

tures; (2) SGMMs benefit much less from feature-level combination

(1% relative improvement) as opposed to HMM/GMMs (4% rela-

tive improvement) which can eventually match the performance of

SGMMs; (3) SGMMs can be significantly improved when individ-

ual systems are combined on a score-level. This suggests that the

SGMM systems provide complementary recognition outputs. Over-

all relative improvements of the combined SGMM and HMM/GMM

systems are 21% and 17% respectively compared to a standard ASR

baseline.

Index Terms— Automatic Speech Recognition, Discriminative

features, System combination

1. INTRODUCTION

Discriminative techniques for training probabilistic features used in

Automatic Speech Recognition (ASR) have been extensively stud-

ied in the last decade. The first probabilistic features exploited in

Gaussian Mixture Model (GMM) based HMMs have been proposed

in [1]. Phone posterior probability estimates obtained from dis-

criminatively trained artificial Neural Network (NN) and then post-

processed were used as inputs for HMM/GMMs. Although prelim-

inary versions of such the NN based features did not outperform

conventional cepstral features, interestingly, they have shown com-

plementary performance and thus their subsequent combination on
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a feature-level brought significant ASR improvements. Recently,

more complex NN based features have been proposed using a Bottle-

Neck (BN) approach [4, 5]. Although the features are also obtained

as a product of NNs, they are not derived from the phone-class pos-

teriors. Instead, the features are obtained as linear outputs from a

middle (bottle-neck) layer in a 5-layer NN. Nowadays, BN features

(combined with conventional MFCCs [2] or PLPs [3]) modeled us-

ing HMM/GMMs constitute a state-of-the-art in Large Vocabulary

Continuous Speech Recognition (LVCSR) task [5, 6, 7].

In acoustic modeling, a significant effort has been directed in last

years toward model adaptation and multilingual approaches. Among

others, Subspace Gaussian Mixture Models (SGMMs) have been

proposed [8]. Unlike conventional HMM/GMMs, SGMMs split the

model into globally shared parameters and parameters specific to

acoustic states which enables various kinds of acoustic model ty-

ing. Such the new model structure has been successfully explored in

the multilingual acoustic model adaptation [9]. Besides the model

adaptation tasks, SGMMs have also been explored in monolingual

ASR tasks, especially in constrained recognition scenarios (e.g., read

speech, small-vocabulary tasks) [10, 11], but preliminary evaluations

were also performed on an LVCSR scenario [12].

In this paper, we investigate employment of state-of-the-art BN

features and their combination with conventional cepstral features in

an SGMM framework. Since experimental results indicate that SG-

MMs do not benefit from the feature-level combination, as opposed

to HMM/GMMs, we analyze complementarity of individual systems

for both acoustic modeling techniques. To estimate a measure of

complementarity, we use ROVER - Recognizer Output Voting Er-

ror Reduction - a technique allowing to combine word (symbol) se-

quences taken as outputs of different recognition systems [13]. In

our experiments, neural networks and acoustic models are trained

on 150 hours of meeting data and evaluated on well-known NIST

Rich Transcription (RT’07) ASR evaluation task1. We demonstrate

that although SGMMs do not benefit from feature-level combination,

significant improvements can be achieved by combining recognition

outputs on a score-level. Eventually, amount of parameters to be es-

timated for the SGMM systems are considerably less than for the

HMM/GMM systems.

In the reminder of this paper, we first review the concept of NN

based features as well as subspace GMMs (Section 2). Then, Sec-

tion 3 introduces our experimental setup and used datasets. Experi-

mental results on feature-level and score level combinations are pre-

sented in Sections 4 and 5, respectively. Section 6 concludes the

work.

1http://www.itl.nist.gov/iad/mig/tests/rt/2007/index.html
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Fig. 1. Diagram of extracting BN features using 5-layer NN.

2. RELATED WORK

In this section, we first review the concept of NN based features and

then briefly summarize the SGMM acoustic modeling framework.

2.1. NN based features

The probabilistic features are usually considered as phone class pos-

terior probabilities given the acoustics and estimated with a NN that

can be trained on any auxiliary dataset The language of the train-

ing data determines the number of output units K (number of phone

classes) of the NN. The phone classes can for example be context-

independent monophones or context-dependent triphones.

Unlike phone posteriors estimated using traditional 3-layer NN,

we exploit Bottle-Neck (BN) features obtained from a 5-layer NN

where the middle hidden layer (BN layer) has the size of the desired

feature vector. The first and the third hidden layers in the NN are usu-

ally of the same size. The choice of using 5-layer NN is satisfied by

their significantly higher performance achieved already on a frame-

level during NN training, as shown later in Section 4. As illustrated

in Fig. 1, the NN is trained using spectral based features extended by

a temporal context [5]. First, the critical-band-energies are extracted

from the speech. A 23 Mel-scaled filter bank is used for 16 kHz

signal. Further, a block of consecutive 31 frames is created repre-

senting a 310 ms long temporal context and each energy coefficient

is post-processed by applying Hamming window and Discrete Co-

sine Transform (DCT). Eventually, the first 16 DCT coefficients are

preserved in each critical-band and concatenated (over all 23 spectral

bands) into the final 368 (16×23) dimensional feature vectors used

for NN training. Unlike conventional Tandem approach where fea-

tures are represented by phone-posterior estimates, the BN features

generated usually using a 5-layer NN are obtained as linear outputs

in the third (bottle-neck) NN layer.

2.2. SGMMs

Subspace Gaussian Mixture Models (SGMMs) enable to compactly

represent a large collection of mixture-of-Gaussian models. Unlike

conventional HMM/GMMs in which state model parameters are di-

rectly estimated from the data, SGMM model parameters are derived

from a set of state specific parameters, and from a set of globally

shared parameters which can capture phonetic and speaker varia-

tion [8].

In the case of a conventional GMM, the likelihood is given as

p(x | j) =

Mj∑

i=1

wjiN (x;µji,Σji), (1)

where j is the state and the parameters of the model are wji, µji and

NN structure Train CV

3-layer 67.3 66.4

3-layer (spk norm) 68.5 67.5

5-layer (spk norm) 70.9 69.7

Table 1. Acc [%]: Frame-based phone accuracies estimated for

training and Cross-Validation (CV) sets for different NN structures.

Σji. The SGMM in the basic case is given as

p(x | j) =
I∑

i=1

wjiN (x;µji,Σi) (2)

µji = Mivj (3)

wji =
expwT

i vj∑I

l=1 expw
T
l vj

, (4)

where vj are state specific vectors (with dimension similar to that

of the speech features), and wi, Mi, and Σi are globally shared pa-

rameters. I is the number of Gaussians in the shared GMM structure.

In fact, we employ a Universal Background Model (UBM) which is

a mixture of full-covariance Gaussians of size I that is used to ini-

tialize the system and to prune the Gaussian indices during training

and decoding. The basic concept of SGMMs can be extended to-

wards large-scale acoustic models by adding sub-state specific vec-

tors and speaker-dependent mean offsets via speaker vector parame-

ters v(s) and “speaker projections” Ni [12]. Sub-state specific vec-

tors represent a way of largely extending the model capacity while

preserving the total number of parameters. In the following Sec-

tions 4 and 5, SGMMs will also be extended with speaker vectors

towards a speaker-dependent system to demonstrate their efficiency

for speaker-dependent acoustic modeling.

3. EXPERIMENTAL SETUP

All the experiments were done with the open-source Kaldi speech

recognition toolkit [11]. Our LVCSR system is partially following

the AMI-LVCSR system represented by quite a complex approach

running in several passes and developed for NIST RT’07 (meeting

data) evaluations [14].

For detailed analysis of acoustic modeling techniques, only one-

pass ASR system is implemented. Instead of applying VTLN, CM-

LLR and expanding lattices using four-gram Language Model (LM),

one-pass decoding is performed using a bi-gram LM. The dictio-

nary contains around 50 K words. The acoustic scale factors were

always tuned for the best Word-Error-Rates (WERs) during our ex-

periments. AMI and ICSI meeting data yielding in total 150 hours

of segmented speech is exploited for training of NNs and acoustic

models. The data is represented by Individual Head Microphone

(IHM) recordings sampled at 16 kHz and the reference segmentation

is used.

As a baseline, conventional mean- and variance-normalized (per

speaker) MFCCs and PLPs expanded using their first and sec-

ond order derivatives (39 dimensions) are initially evaluated using

HMM/GMMs. Similar to [7], we also exploit 3rd order derivatives

in PLPs subsequently reduced by HLDA (described in [15]) to 39 di-

mensional features. The HLDA considers each Gaussian component

as a class. Cross-word tied-states triphone HMM/GMMs (having di-

agonal covariance matrices) were trained by Maximum Likelihood

(ML). The model contains 5 K tied states and in total 120 K Gaus-

sians. Performance of the baseline systems is given in Tab. 2. Com-
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features dimension HMM/GMM SGMM SGMM+“spkvecs”

WER [%] # params WER [%] # params WER [%] # params

MFCC 39 42.1 (9.4M) 37.9 (6.4M) 36.2 (7.1M)

PLP 39 41.7 38.4 36.6

PLPHLDA 39 39.2 38.9 36.5

BN 30 37.6 (7.2M) 35.9 (6.0M) 35.0 (6.5M)

BNPCA 30 37.5 35.8 35.0

BNHLDA 30 37.1 36.1 34.7

BNHLDA+∆ 60 35.8 35.2 34.5

PLP+BN 69 35.9 (16.6M) 34.6 (7.9M) 34.0 (9.3M)

PLP+BNHLDA 69 35.3 34.9 34.6

PLPHLDA+BN 69 35.4 34.9 34.2

PLPHLDA+BNHLDA 69 35.0 34.8 34.2

PLPHLDA+BNHLDA+∆ 99 34.6 (23.8M) 34.7 (9.9M) 34.1 (11.8M)

Table 2. WER[%]: Performance of different features and their combinations modeled by HMM/GMMs and SGMMs. We also estimate

amount of parameters of the corresponding acoustic models. Bold numbers highlight the best systems.

pared to [7], slightly less training data (150 hours instead of 180

hours) was used without VTLN normalization.

In the following experiments using HMM/GMMs, we apply a

concept of Single Pass Retraining (SPR) where an initial model was

always trained on simple PLPs. Our informal experimental results

indicate that SPR when exploited on BN features performs similar to

the full GMM training. The same HMM/GMM model size is there-

fore kept after the SPR. Eventually, 12 ML iterations are followed to

better settle new GMMs in the new feature space.

4. FEATURE-LEVEL COMBINATION

First, we describe extraction of “simple” BN features used through-

out our experiments. For NN, 124 hours of randomly selected

data from AMI/ICSI corpus was used for training and 12 hours for

Cross-Validation (CV). We decided to use a 5-layer NN topology

as it was shown to outperform 4-layer NN [6]. Inspired by [7],

the final size of 5-layer NN was selected to have about 2M pa-

rameters for 368 dimensional input vectors (per speaker mean- and

variance-normalized), for NN trained to classify sub-phone classes

(i.e., K=135 targets corresponding to 45 English phonemes uni-

formly split into 3-states). An increase in gain while exploiting sub-

phone classes during training has been observed in [16]. In the case

of probabilistic (Tandem) features, the gain which can be achieved

from sub-phone classes goes at the expense of large dimensionality

of the output features. However in the case of BN features, the num-

ber of output classes does not directly affect the output feature size

and thus sub-phone classes can be easily used for the NN training.

Based on our various informal experiments, the NN with bottle-neck

size of 30 performed the best and the linear outputs were taken from

the bottle-neck layer to create output features. For the selected NN-

size, a possible 5-layer NN topology is 368-4 K-30-4 K-135. For the

sake of comparison, Tab. 1 compares performance of a 5-layer NN

(having 4 K neurons in hidden layers) with a conventional 3-layer

NN alternative (having also 4 K neurons in the hidden layer). NN

performance is presented for 1-state phone output and frame-based

phone accuracies for the training and CV sets. The results clearly

show that speaker normalization performed on top of input features

and a 5-layer NN topology significantly improve discrimination of

the NN.

Further, let us consider an HMM/GMM framework. Perfor-

mances of BN and standard cepstral features for RT’07 ASR task

are summarized in Tab. 2. BN features achieve expected WER im-

provements of about 4% absolute over PLPs. In addition, simple BN

features were deccorelated using Principal Components Analysis

(PCA) and also by previously mentioned HLDA prior HMM/GMM

modeling. According to results presented in Tab. 2, HLDA is pre-

ferred over PCA. HLDA is assumed to maximize the between-

class separability and in contrast to well-known Linear Discriminant

Analysis (LDA), HLDA does not assume the class covariances to be

the same. Then, inspired by [7], NN based features were extended

with the first order derivatives (+∆) which are expected to overcome

an HMM assumption of frame-independence. This brings another

2% considerable improvement over simple BN features.

Eventually on the feature-level, we also evaluated a combination

of cepstral and BN features (without any subsequent dimensionality

reduction). Experimental results for various types of feature combi-

nations, shown in Tab. 2, demonstrate that both PLPs and BN fea-

tures are to some extent complementary and additional WER im-

provements (of about 1% absolute) can be achieved.

4.1. SGMMs

Similar to HMM/GMMs, SGMMs were first trained on standard

cepstral features. For SGMMs, similar context-tree tying is ex-

ploited with 5 K states. The UBM is trained on the whole AMI/ICSI

data and I=500 Gaussians are retained. The total-number of state-

specific vectors is 100 K. Throughout all experiments, the subspace

dimension was kept constant and equal to S=50 (in case of using

speaker vectors, the dimension was kept equal to 39). Results in

Tab. 2 clearly show that SGMMs significantly reduce WER (by

about 3-4% absolute) compared to HMM/GMMs for standard cep-

stral features.

Then, BN features were explored. Unlike HMM/GMMs devel-

oped using SPR, SGMMs were always trained from scratch. As

shown in Tab. 2, simple BN features applied in the SGMM frame-

work reduce WER by about 4% compared to the cepstral features.

Such the reduction is similar to the one achieved by HMM/GMMs.

Interestingly, HLDA deccorelation applied prior SGMM modeling

does not help. Similar trend can be observed for PLPs deccorelated

by HLDA. Since UBM is trained to retain full-covariance GMMs,

we hypothesize that this additional step of deccorelation is useless.

Although NN is trained with large temporal context (i.e., 310 ms),

an extension of the BN features by first order derivatives brings ad-

ditional gain, similar to HMM/GMMs.

Finally, BN features were combined with PLPs. Once the best
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PLP+MFCC BN BNHLDA+∆

HMM/GMM 38.4 38.2

SGMM 34.8 34.6

SGMM+“spkvecs” 33.3 33.2

Table 3. WER[%]: Score-level combination of three individ-

ual systems using ROVER for three types of acoustic models:

HMM/GMM, SGMM, SGMM+“spkvecs”.

feature-level combined systems are compared to the best individual

systems for each acoustic modeling framework, we observe that SG-

MMs benefit much less from feature-level combination (marginal

1% relative improvement) as opposed to HMM/GMMs (about 4%

relative). In addition as indicated in Tab. 2, HMM/GMMs eventually

match the performance of SGMMs after performing the feature-level

combination. Similar trends can be observed for speaker-dependent

SGMMs (employing speaker vectors denoted to as “spkvecs”) in

Tab. 2.

4.2. Acoustic model size

In addition to WERs, Tab. 2 also shows total number of param-

eters of each individual acoustic model2. Although conventional

HMM/GMMs perform similar to SGMMs after exploiting combined

BN and PLP features (WER about 32.6%), SGMMs have about

3 times less parameters if the best performing systems are compared.

5. SCORE-LEVEL COMBINATION

Although SGMMs provide much better performance when em-

ployed over single acoustic features, feature-level combination pro-

duced marginal improvement. Such the trend is on the contrary to

which was observed in the case of conventional HMM/GMMs. As

a consequence, both acoustic modeling frameworks achieve similar

performance (bold numbers in Tab. 2).

Unlike feature-level combination, this section focuses on com-

bining individual recognition systems on a score-level. More par-

tially, we employ ROVER - a standard technique allowing to com-

bine word (symbol) sequences taken as outputs of different recogni-

tion systems [13]. ROVER can be seen as a simple approach mea-

suring complementarity of recognition systems based on counting si-

multaneous and dependent errors. It assumes that significant recog-

nition gain can be achieved if the combined systems exhibit different

(heterogeneous) recognition errors.

Results on score-level combination for the both HMM/GMM

and SGMM systems are given in Tab. 3. Outputs of three individ-

ual recognition systems are always combined (trained using PLPs,

MFCCs and simple or HLDA-transformed BN features). Interest-

ingly, a combination of HMM/GMM-based systems fails, since the

ROVER output performs worse than the best (BN-based) individ-

ual system. However, SGMMs can well benefit from the score-level

combination (WER=34.8% as opposed to the best (BN-based) indi-

vidual system with WER=35.9%). This suggests that the SGMM-

based recognizers trained with diverse features make heterogeneous

errors at the output.

In addition to three individual recognition systems combined in

Tab. 3, in Tab. 4, we use for the score-level combination also the

“best” performing system (developed using feature-level combina-

tion based on results given in Tab. 2). Tab. 4 demonstrates the best

2Note: amount of parameters of the NN is not included.

PLP+MFCC+BNHLDA+∆ + “BEST“

HMM/GMM 34.5

SGMM 32.9

SGMM+“spkvecs” 32.1

Table 4. WER[%]: Score-level combination of three individual sys-

tems plus the best system from Tab. 2 using ROVER for three types

of acoustic models: HMM/GMM, SGMM, SGMM+“spkvecs”.

final performance for the both HMM/GMMs as well as SGMMs

acoustic modeling techniques (also a speaker-dependent SGMM

framework is presented). Compared to the HMM/GMM-MFCC

baseline, 17% and 21% relative improvements in WER are achieved

for speaker-independent HMM/GMM and SGMM systems.

6. CONSLUSIONS

We have demonstrated that the SGMM framework is an efficient ap-

proach in the LVCSR task. Overall evaluations of SGMMs exploit-

ing powerful but complex PLP-BN features yield similar results as

those obtained by conventional HMM/GMMs. Nevertheless, the to-

tal number of SGMM parameters is about 3 times less than in the

HMM/GMM framework. Evaluation results also indicate different

properties of the examined acoustic modeling techniques. Although

SGMMs consistently outperform HMM/GMMs when built over in-

dividual features, HMM/GMMs can benefit much more from the

feature-level combination than SGMMs. Nevertheless based on an

analysis measuring complementarity of individual recognition sys-

tems, we show that SGMM-based recognizers produce heteroge-

neous outputs (scores) and thus subsequent score-level combination

can bring additional improvement.
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