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ABSTRACT

In the past few years, deep neural networks (DNNs) achieved
great successes in speech recognition. The layer-wise pre-
trained deep belief network (DBN) is known as one of the crit-
ical factor to optimize the DNN. However, the DBN has one
shortcoming that the pre-training procedure is in a greedy for-
ward pass. The top-down influences on the inference process
are ignored, thus the pre-trained DBN is suboptimal. In this
paper, we attempt to apply deep Boltzmann machine (DBM)
on acoustic modeling. DBM has the advantages that a top-
down feedback is incorporated and the parameters of all layer-
s can be jointly optimized. Experiments are conducted on the
TIMIT phone recognition task to investigate the DBM-DNN
acoustic model. Comparing with the DBN-DNN with same
amount of parameters, phone error rate on the core test set is
reduced by 3.8% relatively, and additional 5.1% by dropout
fine-tuning.

Index Terms— phone recognition, acoustic modeling,
Deep Boltzmann Machines, Deep Neural Networks

1. INTRODUCTION

In the past few years, deep neural networks (DNNs) were in-
troduced to speech recognition tasks and achieved great suc-
cesses. The DNN-HMM acoustic models achieved signifi-
cant recognition error reduction over discriminatively trained
GMM-HMM models [1]. It is believed that the efficient and
powerful modeling ability of deeper networks is one critical
factor to the remarkable accuracy gains [2, 3].

A two-stage training procedure, pre-training and fine-
tuning, is often taken to optimize DNNs. In the pre-training
stage, restricted Boltzmann machines (RBMs) are generative-
ly learned and stacked layer-by-layer, producing a multilayer
generative model called deep belief network (DBN). In the
fine-tuning stage, a final soft-max layer is added to the DBN
and the whole network is tuned discriminatively through er-
ror backpropagation. This kind of network is referred to as
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DBN-DNN for clarity.
One shortcoming of the DBN-DNN is that, the DBN is

pre-trained using a greedy bottom-up pass [4]. The top-down
influences on the inference process are ignored. Parameters
of the lower-level layers are never adjusted when pre-training
one layer of the network, thus the pre-trained DBN is subop-
timal.

Recently, new learning algorithms for deep Boltzmann
machines [5] were proposed. DBMs retain the many-layer
deep architecture of DBNs, the unsupervised generative pre-
training procedure, and have the advantages that a top-down
feedback pass is incorporated, and the parameters of all lay-
ers can be jointly optimized [5, 6]. DBMs can also be used
for classification tasks by adding a top soft-max layer. It is
referred to as DBM-DNN in our work.

DBM-DNNs have been successfully applied to tasks such
as handwritten digit recognition, object recognition [5, 7], and
spoken query detection [8]. In this paper, we attempt to use
DBM-DNN for acoustic modeling. The DBM-DNN acoustic
models are examined on the TIMIT phone recognition task.
A variety of configurations of the DBM-DNN models are in-
vestigated and discussed. Moreover, the dropout fine-tuning
method, which was proposed most recently [9], is also inves-
tigated in our DBM-DNN acoustic models.

The rest of the article is organized as follows. Section
2 briefly describes how to construct and train a DBM. The
experimental results are reported and analyzed in Section 3.
Our conclusions are summarized in Section 4. In Section 5,
we provide a discussion of relation to prior work.

2. TRAINING DBM-DNN MODELS

Before introducing the learning algorithm of DBM-DNNs,
we provide an overview of the model architecture. We use
a two-hidden layer DBM-DNN to present the differences of
the architecture comparing with DBN-DNN. The architecture
of the two-hidden-layer DBM-DNN is depicted in figure 1.
Training the DBM involves the top-down feedback when in-
ferring the hidden layer h1, which leads to the novel architec-
ture of an additional input in the DBM-DNN model. The rest
of this section focuses on how to train the DBM-DNN model.
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Fig. 1. The DBM-DNN model. The posterior p(h2|v) are
used as additional input.

Like DBNs, DBMs are also probabilistic generative mod-
els. The learning algorithm proposed by Salakhutdinov [5]
provides a new way to train DBMs. The energy function of
the two–hidden-layer DBM model is defined as(ignoring bias
terms):

E(v,h1,h2; θ) = −vTW1h1 − h1
TW2h2 (1)

where W1, W2 are the weight matrices between visible-to-
hidden and hidden-to-hidden layers. The probability that
the DBM model assigns to visible vector v can be obtained
through energy function:

p(v; θ) =
∑

h1,h2
exp(−E(v,h1,h2; θ))∑

v
∑

h1,h2
exp(−E(v,h1,h2; θ))

(2)

From formula 2, the gradient of negative log-likelihood is ob-
tained in the form of

−∂logL
∂θ

= 〈∂E
∂θ
〉
data
− 〈∂E

∂θ
〉
model

(3)

where 〈∂E∂θ 〉data and 〈∂E∂θ 〉model denote data-dependent ex-
pectation and model’s expectation respectively.

Exact calculation of the second part of formula 3 takes
exponential time and is intractable. To address this problem,
Salakhutdinov [5] proposed an efficient approximate learning
algorithm. The data-dependent expectations are estimated by
using the mean-field inference and the model’s expected s-
tatistics are estimated by using Markov-chain Monte-Carlo
(MCMC) sampling (for more details see [5, 7]).

The initial model parameters θ can be obtained by using
modified RBMs [5]. In the stage of training these RBMs, the
influences of the top-down and bottom-up pass require special
consideration. For the first RBM, when inferring the hidden
layer h1, the input are doubled. Conversely, for the last RBM,
the activations of hidden layer are doubled. The whole pre-
training process does not require any supervised information.

The above procedures describe binary-binary DBMs. For
speech recognition tasks, the input v is continuous. We use
Gaussian-Bernoulli DBMs [10].

After obtaining the initial parameters, the mean-field and
MCMC approximation procedure is used to jointly optimize
the whole DBM. Then, the optimized DBM model is used to
initialize a DNN. Furthermore, the DBM-DNN model is dis-
criminatively fine-tuned by using standard back-propagation.
The model parameter W3 is initialized randomly.

3. EXPERIMENTS

In this section, a variety of configurations of the DBM-DNN
models are investigated and discussed, including different
layer numbers, layer sizes, limited amount of labeled data,
and the dropout fine-tuning method. Results are also com-
pared with DBN-DNN models.

3.1. Experimental setup

All experiments are conducted on the TIMIT corpus to eval-
uate the DBM-DNN acoustic models for phone recognition.
The 3696 sentences from 462 speakers are used for training.
A development set of 50 speakers is selected from the test set.
That set does not overlap with the core set. The 24-speaker
core test set is used for evaluation.

The conventional 13-dimension MFCC features, along
with their first and second derivatives are used. Cepstral
mean and variance normalization is performed on per utter-
ance case. For DNN models 11 consecutive frames are used
as network input. The baseline acoustic model is a 61-phone
context independent GMM-HMM model, which is trained
using HTK in maximum likelihood fashion. To train DNN
models, the corpus is labeled using forced alignment with this
baseline model.

All decoding experiments use the same bigram phone lan-
guage model and same decoding parameters, only acoustic
models are changed. For scoring the recognition results are
mapped to 39 units [11] after decoding.

3.2. Different configurations of DBM-DNNs

In the first experiment, the DBM-DNNs with various hidden
layer numbers and layer sizes are compared. The same train-
ing recipe is used for all the configurations. First pre-trained
RBMs are stacked as the initial parameters of a DBM. Then in
the inference procedure of the DBM, for each mini-batch of
training data, 3 Gibbs updates in the MCMC procedure and
5 iterations of mean-field inference are used. The learning
rate is set to 0.01 initially and is multiplied by 0.99998 after
each mini-batch. The inference procedure is stopped after 100
iterations. After that a randomly initialized soft-max layer
with 183 outputs are added on top of the pre-trained DBM. S-
tandard back propagation is used to fine-tune the DBM-DNN
model. For both pre-training and fine-tuning the mini-batch
size is all set to 128.

The phone error rate results are listed in table 1. The
baseline GMM gives PER of 29.54% on the core set, and
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Table 1. PER of various acoustic models. axb in the column
of configurations means a deep model with a hidden layers
and each has b units.

acoustic model configurations devset coreset
GMM - 28.69% 29.54%

2x512 22.98% 23.93%
2x1024 22.02% 23.10%

DBM-DNN 2x1536 21.38% 22.99%
2x2048 21.46% 22.62%
3x1024 22.37% 23.42%
3x1024 21.60% 23.40%

DBN-DNN 3x2048 21.86% 23.51%
7x1024 21.51% 22.76%
7x2048 21.30% 23.02%

the 2x2048 DBM-DNN model achieves 22.62%. The relative
PER reduction is 23.4%, which indicates the more powerful
modeling ability of DBM-DNNs. Comparing the PER result-
s of different configurations, we can see that it benefits from
increasing the layer size. By increasing layer size from 512
to 2048, the PER is reduced by 1.5% and 1.3% absolute on
the development set and the core set. But it results in worse
PER when increasing layer number from 2 to 3. The reason
may lie in the DBM training procedure, because it does not
guarantee to improve the variational bound by adding an ex-
tra layer. Similar results were reported in [5, 8].

The results of DBN-DNN acoustic models are also given
in table 1. All the DBN-DNN models are trained following
the learning schedule in [1]. When same amount of parame-
ters are used, the 2x2048 DBM-DNN outperforms the 3x2048
DBN-DNN. (The DBM-DNN has extra 2048 input units. For
more details see section 2.) The PER is reduced by 3.8% rel-
atively on the core test set. Even comparing with a deeper
DBN-DNN model with 7 hidden layers, the DBM-DNN is
still slightly better. We believe that incorporating a top-down
feedback in the approximate inference procedure is the criti-
cal factor that contributes to the better recognition accuracies
from DBM-DNN models. It makes DBM-DNN more robust
to deal with ambiguous inputs, which generally exist in the
features of speech signals.

3.3. Partially labeled data training

Since DBM-DNNs with fewer amounts of parameters achieve
same accuracy as DBN-DNNs, they may be more useful for
low resource tasks. This inspires us a further investigation
when limited amount of labeled data are available. In the sec-
ond experiment, during the fine-tuning stage of the 2x2048
DBM-DNN and the 3x2048 DBN-DNN, different ratios of
labeled data are randomly selected from training corpus. The
initial weights are from the same pre-trained model as in sec-
tion 3.2.
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Fig. 2. Comparison of DBM-DNN with DBN-DNN in terms
of PER on TIMIT development set using different training
ratios.
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Fig. 3. Comparison of DBM-DNN with DBN-DNN in terms
of PER on TIMIT core set using different training ratios.

It is shown in figure 2 and 3 that the DBM-DNN consis-
tently outperforms the DBN-DNN. The performance margin
is larger when the amount of labeled data is fewer than 40%.
When 20% labeled data are used, the DBM-DNN gets 6.6%
relative PER reduction comparing with the DBN-DNN mod-
el. We can also see that using only 10% of labeled data the
DBM-DNN model achieves comparable performance to the
baseline GMM model (29.61% of DBM-DNN v.s. 29.54%
of GMM on the core test set). This interesting result inspires
us to apply DBM-DNN models for low resource tasks in the
future. Moreover, using partially labeled data significantly re-
duces calculation loads since the back-propagation procedure
is very computational intensive. This may be helpful when a
system is required to be built quickly.

3.4. Dropout fine-tuning

Generally, neural networks with many hidden units and deep
architecture can get great performance on training set but do
worse on test data if there is only a limited amount of train-
ing data. The conventional way to improve the performance
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on test data is averaging the output from a large scale num-
ber of different networks. However, training these networks
is impractical in a reasonable time and accomplishing the test
with a large number of networks is computationally expen-
sive. The dropout procedure [9] provides an efficient way to
perform the work of averaging different networks. Moreover,
the dropout procedure is performed with a single network thus
the testing is more efficient than conventional model averag-
ing approaches.

In this experiment, dropout fine-tuning is performed with
the standard, stochastic gradient descent procedure. We use
the 2x2048 DBM-DNN and 50% dropout for hidden layers.
Mini-batch size of 128 is used for dropout-backpropagation.
A small constant learning rate of 0.008 is used. We apply the
total gradient on a mini-batch. The model is trained for 200
epochs to converge. The best results show that PER is 21.46
on the core test set and 19.51 on the development set. The
DBM-DNN model gets additional relative PER reduction of
5.1% on the core test set when the standard back-propagation
is replaced by dropout-backpropagation.

4. CONCLUSIONS

In this paper, we have successfully applied DBM-DNNs
on acoustic modeling. The experimental results on TIMIT
showed that the 2x2048 DBM-DNN can achieve 23.4% rela-
tive error reduction on the core test set when comparing with
the baseline GMM model. Using same amount of parameters,
DBM-DNN models perform better than DBN-DNN models.
Moreover, DBM-DNN models more obviously outperform
DBN-DNN models when using only very limited amount of
labeled data. Applying the dropout strategy obtains another
5.1% relative error reduction on the core test set.

The two main challenges we are facing are to improve
the efficiency of training to perform the DBM-DNN acoustic
modeling on larger data sets, and to develop effective algo-
rithms for training DBMs with more hidden layers.

5. RELATION TO PRIOR WORK

To our knowledge, the work of this paper is the first time that
DBM-DNNs are applied on speech recognition. Our work is
based on the efficient learning algorithm of DBMs proposed
by [5].

The work of [5] focus on the learning algorithms of DBM-
s and the application on handwritten digit recognition and
object recognition. The work of [8] uses DBMs for spoken
query detection, where DBMs are used to generate posteri-
orgrams. In our work DBMs are used as acoustic models in
a phone recognition system. In our work we investigate d-
ifferent configurations of DBM-DNN acoustic models. The
recently proposed dropout fine-tuning is also incorporated in
our experiments.

The work of [1, 2] use DBN-DNN for acoustic modeling,
while our work investigates DBM-DNN, which is a new type
of DNNs, and has the advantage of jointly optimization of the
whole network.
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