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ABSTRACT 
 
This study investigates the use of multiple versions of the 
same speech unit in automatic phone recognition. Two 
methods were applied to combine multiple utterance 
versions in decoding: cross forced-alignment and n-best 
ROVER. The phone error rate was reduced from 15% to 2% 
on isolated words and from 33% to 19% on TIMIT 
sentences. The error rate was reduced the most when the 
second version was added, and less so as each additional 
version was added. Depending on the language model 
weight, it might be better to use the language model only in 
n-best generation, but omit it in scoring the hypotheses 
applied to the combination methods. N-best ROVER 
effectiveness may be enhanced by lowering the language 
model weight. 
 

Index Terms— Forced alignment, N-best ROVER, 
phone recognition, multiple utterance versions 
 

1. INTRODUCTION 
 
The performance of the state-of-the-art Hidden Markov 
Model based automatic speech recognition (ASR) systems 
has improved substantially over the last several decades. To 
further reduce error rates for ASR is a challenging problem. 
In this study, we investigate the benefit of using multiple 
versions of a speech unit in automatic phone recognition. 

It is not uncommon for human listeners to have the 
benefit of multiple versions of the same utterance. For 
example, children may rely on multiple examples of the 
same word to acquire a lexicon, and speakers often ask for 
confirmation or repetition in conversation. However, most 
ASR systems recognize individual utterances independently, 
and the problem of simultaneously decoding multiple 
versions of the same speech unit has not been widely 
addressed. Several studies have attempted to deal with this 
problem. Haeb-Umbach et al. [1] applied both multiple-
candidate transcription method and average transcription 
method in automatic transcription of unknown words. In the 
first method, multiple transcriptions of an unknown word, 
one for each utterance version of the word, were compared 
to all utterance versions of the word, and the obtained 
transcription was the one for which the product of the 
likelihoods of all utterance versions given the transcription 
was maximum. In the second method, an “average 
utterance” was generated by training a whole-word model 

from all the word’s utterance versions, and the obtained 
transcription was the one that had the highest likelihood on 
this average utterance. Wu and Gupta [2] proposed a word-
network-based algorithm for simultaneous decoding of 
multiple utterance versions. The algorithm merged 
independently scored lattices, one for each utterance 
version, to form a lattice scored jointly from all utterance 
versions, and then found an optimal path through the 
combined lattice. Nair and Sreenivas [3-4] applied Multi 
Pattern Dynamic Time Warping to determine the optimal 
path in the joint space of all utterance versions, and applied 
Multi Pattern Joint Likelihood algorithms to determine the 
best state sequence for all utterance versions jointly. Related 
work has also been done in pronunciation modeling [5-6] 
and decoding partly repeated utterances in voice search [7- 
8]. 

In this study, we investigate how the error rate is 
reduced when more utterance versions are available in 
automatic phone recognition for both isolated words and 
sentences. We apply two popular techniques to combine 
multiple utterance versions in decoding - forced alignment 
and ROVER. In the following sections, the methods are first 
described in Section 2, followed by the experiments on 
isolated words and sentences in Section 3 and 4 
respectively. Finally, Section 5 completes the paper with 
conclusions and a discussion of future research issues.  
 

2. CROSS FORCED-ALIGNMENT AND N-BEST 
ROVER 

 
Different utterance versions of the same word or sentence, 
whether from different speakers or from repetitions of the 
same speaker, have different acoustic patterns. Some 
versions may be more accurately recognized than others by 
an ASR system. Suppose there are m utterance versions for 
a speech unit and each version has a set of n-best hypotheses 
generated by an ASR system: H(Ui) = {hi1, hi2, …, hin}, i = 
1, 2, .., m; we can pool the hypotheses of all utterance 
versions, Hall = 𝐻(𝑈!) = {h11, h12, …, hmn}, then apply 
forced alignment between each hypothesis and each 
utterance version respectively. Therefore, every hypothesis 
has m recognizer scores, one from alignment with each of 
the utterance versions. The optimal hypothesis h* has the 
best recognizer scores with respect to a statistic of the m 
scores. If the mean score is used, for example, we have: 
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We call this method “cross forced-alignment”. Cross forced-
alignment selects a hypothesis from the independently 
generated n-best lists that jointly maximizes the likelihood 
of all utterance versions. 

As an utterance gets longer, it becomes increasingly 
unlikely that any single hypothesis in the n-best lists 
accurately transcribes all of its phones. However, different 
portions of different utterance versions may still be correctly 
recognized. These portions can be combined to make an 
optimal hypothesis using a combination technique such as 
ROVER [9]. ROVER was developed to combine the 1-best 
outputs from multiple ASR systems to produce a composite 
output that has a lower error rate. It consists of two steps. 
First, the outputs are aligned to build a word transition 
network; secondly, the resulting network is searched and the 
best scoring word at each node is selected. Stolcke et al. 
[10] extended ROVER to n-best lists from multiple systems. 
Each system yields a posterior probability estimate at the 
token (word or phone) level, and these multiple estimates 
are combined in a weighted fashion. Finally, the token with 
the highest posterior probability at each position is chosen, 
by which we minimize the expected token-level error rate of 
the hypothesis. 

In this study, we applied n-best ROVER, implemented 
in the SRILM toolkit [11], to n-best lists generated by the 
same system for multiple utterance versions.  In this n-best 
ROVER approach, word posterior estimates used in the 
voting process were computed independently for each 
utterance version, i.e., from the n-best list of each utterance 
version respectively. We also combined cross forced-
alignment with n-best ROVER, in which the recognizer 
score of every hypothesis in the n-best list pool was 
obtained based on the recognizer scores of forced alignment 
between the hypothesis and all utterance versions, and the n-
best lists with these new cross forced-alignment scores were 
used for ROVER.  
 

3. SPEECH CONTROLLED COMPUTING 
EXPERIMENTS  

 
The Speech Controlled Computing corpus [12] consists of 
the recordings of 125 speakers of American English from 
four dialect regions, three age groups and two gender 
groups. Each speaker read a randomized word list consisting 
of 2,100 word items - 100 distinct words appearing 21 times 
each. Randomly selected 100 versions for each of the 100 
words from all speakers, totally 10,000 utterances, were 
used for testing, and the rest for training. Monophone HMM 
and GMM acoustic models, with the standard 39 MFCC 
features and 256 Gaussian mixtures, were trained using the 
CMU pronouncing dictionary [13] and the HTK toolkit [14]. 
The acoustic models had a word accuracy of more than 
99.9% on the test set. 

In the following experiment of automatic phone 
recognition, a phone network in which all phones may 
appear at any position with equal probability was used as the 
language model. We assumed all versions of a word have 
the same phone sequence, which was used as the “gold 
standard” in the tests. The 10,000 test utterances were 
divided into 10 test sets. Each set contained 10 versions for 
each word, totally 1,000 utterances. Different numbers of 
utterance versions were used in decoding. When only one 
utterance version for each word was used, it was a typical 
automatic phone recognition task. In this case, we conducted 
10 tests for every test set, each using one of the 10 utterance 
versions, and there were 100 tests in total for the 10 sets. 
When two or more utterance versions were used, the 
independently generated 5-best lists of the utterance 
versions were pooled. Each hypothesis in the pool was 
forced aligned with all utterance versions respectively, and 
the hypothesis with the highest average log probability score 
from forced alignment was selected. There were 45 tests for 
each test set when two utterance versions were used, i.e., 45 
combinations of choosing two versions from 10; 120 tests 
for each test set when three utterance versions were used, 
etc. Table 1 and Figure 1 (on next page) show the phone 
error rates when using different numbers of utterance 
versions.  

 
Table 1. Averaged phone error rates on isolated words when 
using different numbers of utterance versions for each word. 

Number of 
versions 

Number 
of tests 

Mean phone 
error rate 

Relative 
reduction from 
using one 
fewer version 

1 100 14.89% - 
2 450 6.18% 58.5% 
3 1200 3.77% 39.0% 
4 2100 2.85% 24.4% 
5 2520 2.41% 15.4% 
6 2100 2.15% 10.8% 
7 1200 2.01% 6.5% 
8 450 1.93% 4.0% 
9 100 1.89% 2.1% 
10 10 1.90% -0.5% 

 
With the same acoustic models, the phone error rate 

was reduced from approximately 15% when only one 
utterance version was used to less than 2% when eight or 
more versions were used. The error rate was reduced by 
nearly 60% when the second version was added, and by 
increasingly smaller additional factors as more versions 
were added, reaching a minimum after seven or eight 
versions. At this stage, the most frequent errors were 
confusions between pairs such as /r/ and /er0/, /iy0/ and 
/iy1/, etc. Those “errors” may result from pronunciation 
variability in the data, because we assumed no alternative 
pronunciations in the experiment.  
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Figure 1. Boxplots of phone error rates on isolated words 

when using different numbers of utterance versions. 
 

4. TIMIT EXPERIMENTS 
 
The SX sentences in the TIMIT corpus [15] were each 
spoken by seven speakers. 150 SX sentences, each having 
seven utterance versions, were randomly selected for 
testing. The 150 test sentences were divided into five test 
sets, each having 210 copies of 30 sentences. All other 
sentences excluding the SA sentences,  3,990 utterances in 
total, were used for training the acoustic models. Triphone 
HMM and GMM acoustic models, with the standard 39 
MFCC features, 16 Gaussian mixtures and 1,109 tied states, 
were trained using the TIMIT word transcripts, the TIMIT 
pronouncing dictionary, and the HTK toolkit. Every word in 
the TIMIT pronouncing dictionary has only one phone 
sequence, which was used for both training and scoring. The 
TIMIT phone transcriptions were not used. A phone bigram 
language model was trained on the phone sequences of the 
training utterances, and was used as the language model in 
the following experiment of automatic phone recognition. 
Following Lee and Hon [16], the following phone pairs 
were merged for scoring: (/ix/, /ih/), (/ax/, /ah/), (/ao/, /aa/), 
(/zh/, /sh/). 

We first applied cross forced-alignment to the test sets. 
As in the experiment using the Speech Controlled 
Computing corpus, different numbers of utterance versions 
were used in decoding. When two or more utterance 
versions were used, the independently generated 100-best 
lists of the utterance versions were pooled, and the 
hypothesis with the highest average log probability score 
from cross forced-alignment was selected. The grammar 
scale factor used for generating 100-best lists was set at 10. 
Table 2 and Figure 2 show the phone error rates when using 
different numbers of utterance versions. 

  

Table 2. Averaged phone error rates on TIMIT when using 
different numbers of utterance versions for each sentence. 
Number of 
versions 

Number 
of tests 

Mean phone 
error rate 

Relative 
reduction from 
using one 
fewer  version 

1 35 34.27% - 
2 105 28.36% 17.2% 
3 175 25.44% 10.3% 
4 175 23.69% 6.9% 
5 105 22.59% 4.6% 
6 35 21.86% 3.2% 
7 5 21.06% 3.7% 

 
Figure 2. Boxplots of phone error rates on TIMIT when 

using different numbers of utterance versions. 
 

With the same acoustic models and language model, the 
phone error rate was reduced from 34% when only one 
utterance version was used, to 21% when seven versions 
were used. The error reduction from using more utterance 
versions on TIMIT showed a pattern similar to that on the 
Speech Controlled Computing corpus. Generally, the error 
rate was reduced the most when the second version was 
added, and less so when additional versions were added. 
However, the error rate was reduced more gradually on 
TIMIT than on the Speech Controlled Computing corpus, 
and the overall error reduction was also less substantial on 
TIMIT. We hypothesize that this is because cross forced-
alignment only selects complete utterance-level hypotheses 
from n-best lists, but does not combine hypotheses. When 
utterances are longer, such as those of TIMIT, no hypothesis 
in the pool may be perfect, and one hypothesis may be more 
accurate than another only in some portions. In this case, n-
best ROVER should be able to achieve greater error 
reduction.  

N-best ROVER relies on recognizer scores to compute 
utterance-level posterior probabilities (which are then used 
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to derive word-level posteriors). When a language model is 
used to generate n-best lists, the recognizer scores include 
both acoustic and language model scores. It is not obvious 
whether we should use the acoustic scores only or the 
overall recognizer scores for n-best ROVER, given that the 
hypotheses were generated with a language model and the 
goal is to concatenate portions of different hypotheses to 
make an optimal hypothesis for all utterance versions of the 
same sentence. It is also not obvious how the weight of the 
language model with respect to the acoustic model may 
affect n-best ROVER. On one hand, a more constraining 
language model may provide overall more accurate 
hypotheses in the n-best lists; on the other hand, a less 
constraining language model may provide more variability 
between the n-best lists. Both more accurate and more 
variable hypotheses may benefit n-best ROVER. In the 
following experiment, we used three grammar scale factors, 
1.0, 5.0 and 10.0, which determine the weight of the 
language model relative to the acoustic model, and used 
both acoustic scores only and acoustic plus language model 
scores as n-best scores. We also ran a test without any 
language model; instead, a phone network in which all 
phones may appear at any position with equal probability 
was used as the language model. N-best ROVER with and 
without cross forced-alignment were applied. Cross forced-
alignment was also applied by itself for comparison. The 
recognizer scores from forced alignment were acoustic 
scores only; the language model scores for forced 
alignment, when used, were computed separately. All seven 
utterance versions were used in decoding, 100-best lists 
were generated for each utterance version. The overall 
phone error rates for the 150 test sentences from different 
methods are listed in Table 3. 
 

Table 3. Phone error rates on TIMIT when using seven 
utterance versions and different combination methods. 
 No 

language 
model 

 
s = 1.0 

 
s = 5.0 

 
s = 10.0 

Baseline 44.8% 40.2% 34.0% 33.4% 
F + A 30.7% 26.8% 22.6% 21.0% 
F + AL 26.2% 21.8% 22.4% 
R + A 22.9% 20.5% 19.6% 21.1% 
R + AL 20.6% 19.2% 21.5% 
FR + A 22.2% 20.0% 18.9% 20.3% 
FR + AL 20.0% 18.8% 21.1% 

Baseline: the seven versions were independently decoded. 
F: Cross forced-alignment. R: N-best ROVER. FR: N-best 
ROVER with cross forced-alignment. A: Acoustic scores only. 
AL: Acoustic plus language model scores (AL and A are the same 
when no language model was used). s: grammar scale factor; it is 
used both for generating n-best lists and for weighting the language 
model scores, when used, in cross forced-alignment and n-best 
ROVER. 
 

From Table 3 we can see that both cross forced-
alignment and n-best ROVER significantly reduced the 

phone error rate compared to the baseline system, for which 
multiple versions of a sentence were independently decoded. 
N-best ROVER performed better than cross forced-
alignment, more so when the weight of the language model 
was smaller or there was no constraining language model. 
The optimal weight of the language model for the baseline 
system was different from that for cross forced-alignment 
and n-best ROVER. N-best ROVER preferred a smaller 
language model weight than the baseline system, 
presumably because that increases the independence of the 
generated hypotheses. N-best ROVER with cross forced-
alignment performed only slightly better than n-best 
ROVER alone. Depending on the language model weight, it 
might be better to use the language model only in n-best 
generation, but omit it in scoring the hypotheses. For 
example, using acoustic scores only performed better than 
using acoustic plus language model scores for all the 
combination methods when the language model weight was 
10.0: Cross forced-alignment – 21.0 vs. 22.4%; N-best 
ROVER – 21.1% vs. 21.5%; N-best ROVER with cross 
forced-alignment – 20.3% vs. 21.1%. 
 

5. CONCLUSIONS 
 

We have demonstrated the benefit of phone-level 
decoding of multiple versions of a speech unit, whether it is 
a single word or a sentence. Using cross forced-alignment 
and n-best ROVER to combine multiple utterance versions 
in decoding, the phone error rate was reduced from 15% to 
2% on isolated words and from 33% to 19% on TIMIT 
sentences. The error rate was reduced the most when the 
second version was added, and was reduced by successively 
smaller differences as additional versions were added. When 
a phonotactic language model was used, the optimal weight 
of the language model for n-best ROVER was smaller than 
that for the baseline system in which multiple utterance 
versions were decoded independently. Whether language 
model scores helped in applying cross forced-alignment and 
n-best ROVER depends on the weight of the language 
model.  

In this study, we assumed all utterance versions of the 
same speech unit have the same phone sequences. In future 
work, it will be desirable to generalize to alternative 
pronunciations or multiple utterance versions with speech 
errors or disfluencies. We used the mean of the recognizer 
scores to determine the optimal hypothesis in cross forced-
alignment. Other statistics, such as the maximum, the 
minimum, and the variance, and how to use of a language 
model in decoding multiple utterance versions should also 
be investigated in future studies.  
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