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ABSTRACT

This paper proposes using tandem DBN approach — a hier-
archical architecture that consists of two or more deep belief
networks (DBNs) in tandem manner — for phoneme recog-
nition task on TIMIT. First we describe the standard DBN
approach applied in phoneme recognition and discuss the mo-
tivation of combining it with tandem classifier approach. We
then perform series of experiments to find out the best config-
uration for the DBN in the second level and discover the full
potential of this method. The experiments show that for the
DBN in the second level, (a) 2048 units in each hidden lay-
er is better than 1024 and 512 units, (b) for sufficient length
of temporal context, two hidden layers are better, (c) the one
gives best performance on development set shows 4% relative
improvement on coretest set.

Index Terms— phoneme recognition, deep belief net-
work (DBN), tandem, Restricted Boltzmann Machine (RBM)

1. INTRODUCTION

Since deep belief network [1] was first proposed as a replace-
ment of Gaussian mixture model (GMM) in the classical Hid-
den Markov Model (HMM)-GMM architecture for automatic
speech recognition, it has shown very strong power in model-
ing acoustic signals [2][3][4]. Other than phoneme recogni-
tion tasks on TIMIT database, some research group have been
trying to apply this new architecture to large vocabulary tasks

This work is partially supported by the National Basic Research
Program (973 Program) of China(2012CB316401), the National Natural
Science Foundation of China (60928005, 60805008, 60931160443 and
61003094), the Ph.D. Programs Foundation of Ministry of Education of Chi-
na (200800031015), the Upgrading Plan Project of Shenzhen Key Laboratory
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[5] and some real life applications such as Bing voice search
and Google Voice Input [6].

Tandem System [7] is an elegant and useful way to com-
bine classifiers hierarchically. In Tandem System, a multilay-
er perceptron (MLP) is trained with acoustic features to gen-
erate posterior probability distribution of phonemes. After
that, all the posterior distribution are treated as data (with cer-
tain kinds of transformations applied) for a traditional HMM-
GMM system. This idea is then extended to an MLP followed
by a hybrid HMM-MLP architecture [8][9] (which we call
“tandem MLP” approach in the following text) or an MLP fol-
lowed by a conditional randem field (CRF) [10]. Until recent
years some properties of tandem MLP approach were inves-
tigated [9]. Since DBN has been shown to be quite different
in both the training procedure and effectiveness from a tradi-
tional MLP, we wonder if tandem DBN approach might affect
some conclusions obtained through tandem MLP approach.

The aim of this paper is to fully investigate the potential
capacity of this hierarchical structure of DBNs for phoneme
recognition. Our experiments shows that a temporal context
of 190-270ms with two hidden layers should be used for the
DBN in the second level in tandem DBN architecture to guar-
antee good results.

2. DEEP BELIEF NETWORK

First of all, we need to make some explanations of the term
“deep belief network (DBN)”. On one hand, it was referred to
as a generative model, which was usually trained as stacked
Restricted Boltzmann Machines (RBMs). From the top-down
view of the model, it can describe the joint distribution of
data and states of each hidden layers. While from the bottom-
up perspective, recognition can be performed. And from this
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perspective, it’s very much like a feed-forward neural network
(or MLP). For this reason, after training all the stacked RBM-
s, all the units and weights are treated like a neural network to
perform fine-tuning to get better discriminative results. And
in this way we can get a better feed-forward neural network,
which was also referred to as deep belief networks (some-
times also called deep neural networks, DNN).

2.1. Pre-training

The step of training the generative model described above is
usually called pre-training. When modeling acoustic mod-
el with DBN, to get real valued data into DBN, a Gaussian-
Bernoulli RBM is used for the bottom two layers. All the
RBMs above are all Bernoulli-Bernoulli RBMs. Since DBN
(in this step) is an unsupervised learning method, no label is
needed. Unsupervised learning is believed to be able to cap-
ture crucial distribution of data and thus can help supervised
learning when labels are provided. This opinion has already
been proved in practice for speech data [4][11].

2.2. Fine-tuning

After pre-training, the whole DBN (with a softmax layer
added) was treated as a feed-forward neural network to per-
form back-propagation algorithm with all the labels in the
dataset to get more discriminative power. After that, a DBN
is able to generate the posterior distribution of each phoneme
given an input feature vector.

3. MOTIVATION OF TANDEM DBN APPROACH

Tandem classifier approach was first proposed for speech
recognition in [7]. Tandem classifier approach is an effective
way to combine two (or more) classifiers hierarchically. The
input of lowest level classifier are original acoustic features,
and the classifier outputs the posterior probability distribution
over each phoneme (or state in HMM). The higher level clas-
sifiers receive these posterior probability distributions from
lower level classifiers and treat them as training data. From
these training cases they are trained to generate posterior
probability distribution for even higher level classifiers or for
a HMM to get recognition results. One important property of
this approach is that the posterior classifiers are able to use
even longer context information which has been proved to be
very critical for decision making in acoustic signals [12].

In [7], an MLP and a GMM was used in tandem and was
referred to as the Tandem System. This approach was suc-
cessfully extended as two or three MLPs [8] and a MLP with
a CRF [10]. MLP in the first level was also extended to have
a sparse hidden layer in [13]. Tandem classifier approach was
also called hierarchical phoneme posterior probability estima-
tor in [9]. There is a difference between Tandem System and
other tandem MLP systems in the way they treat posterior
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probabilities generated from the first MLP: in Tandem Sys-
tem, logarithm and Karhunen-Loeve Transformation are ap-
plied, while in tandem MLP system, the posterior probabili-
ties are directly used as features [9].

The aim of this paper is similar to some part of [9], in
which extensive discussion was made on the properties of
posterior features, but there are 3 major differences between
our experiments and [9]:

e Architecture of neural network. In all the experiments
in [9], MLPs are three layered and numbers of units
in the hidden layer is fixed to 1000 for TIMIT tasks.
Although a three layered MLP has the capability to ap-
proximate the posterior probability distribution when
least square error is used, one strong condition must be
satisfied, that is, sufficient hidden units must be used.
On one hand, four or even more layered MLPs (e.g.,
DBNs) have shown to be more appropriate for the task
of phoneme recognition [2][4]. On the other hand, a
network needs exponentially more computational units
to represents a function that can be compactly represen-
t by a deeper architecture [14]. For these two reasons,
we consider it more appropriate to resort to DBN as
a replacement of ordinary three layered MLPs for the
classifier in each level.

o Training procedure. Unlike traditional MLPs, DBNs
are usually trained with two stages, as is described in
section 2. This procedure has shown to be able to get
better results than only using random weights followed
by back-propagation in practice [4][11].

e Acoustic feature. 13-order Perceptual Linear Prediction
(PLP) coefficients with delta and acceleration are used
throughout [9]. But 40-order coefficients (and energy)
Mel-scale log filter-bank (fbank) with delta and accel-
eration are demonstrated to be significantly better than
Mel-Frequency Cepstral Coefficients (MFCCs) [2][3].
The reason for this boost in performance, as is stated in
[15], was not due to the much more dimensions of fea-
ture, but because features that distribute it’s information
across each dimension evenly are more appropriate for
DBNs. Since PLP and MFCC are comparable in the
task of phoneme recognition [16], we suspect that the
use of fbank features might effect some of the conclu-
sions in [9].

The tandem DBN architecture we used in our experiments
is illustrated in Figure 1. For the convenience of our explana-
tion, the classifier whose inputs are original acoustic features
is denoted as the “first level (or Lv1)” and the classifier which
receives posterior distribution as input data is called the “sec-
ond level (or Lv2)”. We will not be discussing a third level
classifier in our study.
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Fig. 1. The tandem DBN architecture used in our work. H-
MM is omitted. All the question marks are what to be deter-
mined in our experiments.

4. EXPERIMENTAL SETUP

4.1. Database

Experiments were performed over TIMIT database for phoneme
recognition. All SA records were removed since they might
bias the results. The database was devided into three parts:
training, development and coretest in the way same as in [17].
For evaluation, 61 phones are mapped to 39 phonemes in the
same way as in [18].

4.2. Training of DBN

During pre-training, all RBMs are trained using Contrastive
Divergence algorithm [19] with stochastic gradient descent.
The mini-batch size is 128. A momentum of 0.9 was used
and no weight decay was applied. For Gaussian-Bernoulli
RBMs, 225 epochs and learning rate of 0.002 was used. For
Bernoulli-Bernoulli RBMs, we trained 100 epoch with learn-
ing rate of 0.02. All the hidden layers in DBN have same
number of hidden units, and a softmax layer with 183 unit-
s was used to output probabilities. These parameters totally
follows [4]. For all the number of layers mentioned below, we
count only hidden layers.

For fine-tuning, we also used stochastic gradient descent
with mini-batch of size 128. Momentum starts from 0.5 and
linearly incremented to 0.9 in 10 epochs. Learning rate starts
from 0.1 and recognition phoneme error rate (PER) on the
development set was used as early-stopping criterion and was
calculated at the end of each epoch. Learning rate was halved
and all the weights returned to the values at the beginning of
this epoch if an increase of substitution error was observed.
The process continued until the learning rate was less than
0.0001.

4.3. Decoder

We use HVite, which is part of HTK [20], as our decoder.
Word insertion penalty and language model scale factor was
fixed to 0.0 and 1.0 separately. All the recognition results are
given with the use of a bigram language model, which was
estimated from transcriptions in the training set.
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5. EXPERIMENTS AND DISCUSSIONS

We first train a DBN for the first level. After that, we fix this
DBN and use it to generate input features for all the DBNs in
the second level. All the details of the DBN we use in the first
level is described in Section 5.1. Section 5.2 focus on inves-
tigating the performance of whole tandem DBN architecture
on TIMIT phoneme recognition task.

5.1. DBN in the first level

The acoustic feature used to train this DBN was 40 coeffi-
cients Mel-scale log filter-bank (with energy) and delta and
acceleration. The feature vectors were extracted with Ham-
ming window with 25ms window length and 10ms window
shift. Each dimension of input data for the DBN was nor-
malized to have mean 0 and variance 1. A temporal context
of 150ms and four hidden layers, each has 2048 units, were
used. With this setting, we get 20.96% PER on development
set and 22.34% PER on coretest set. All the posterior features
used below were generated from this DBN.

5.2. Investigation of DBNs in the second level

Posterior features generated from DBN in the first level was
normalized to have mean O and variance 1. This step is im-
portant as it can remove the effect of prior of phonemes that
have already been learned by the DBN in the first level [9].

The main aim of this section is to find out the best config-
uration of DBN in the second level. There are several things
to be determined: number of units in each hidden layer, length
of temporal context, and the number of hidden layers.

First of all, we would like to determine the appropriate
number of units in each hidden layer. Taking 23 frame con-
text (i.e., 230ms) as an example, the results was depicted in
Figure 2. The reason why we are particular interested in 23
frames is that 150ms-230ms has shown to be more appropri-
ate for the MLP in the second level in tandem MLP archi-
tectures [9]. From Figure 2, when using 230ms as temporal
context, tandem DBN consistently shows superior results over
single DBN. We can also notice that 2048 units perform con-
sistently better on development set in this set of experiments,
so we used 2048 units in all the following experiments.

One particular interesting thing we can discover from Fig-
ure 2 is that deep does not help. This is quite surprising be-
cause it’s very different from what we’ve observed for the
DBN in the first level [4]. To figure out if it’s just a coinci-
dence, we need to fix the number of hidden units and investi-
gate the effect of length of temporal context. The results are
shown in Figure 3.

The first thing we can see from Figure 3 is that the effect
of 150ms-230ms (i.e., 15 frames to 23 frames) temporal con-
text proved in tandem MLP architecture has also been verified
in tandem DBN approach. In fact, due to the extra accuracy of
DBN over MLP in each level, 190ms-270ms (i.e., 19 frames
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Fig. 2. PER of DBN in the second level on development set
and coretest set as a function of number of hidden layers, us-
ing 23 frame context (230ms).

to 27 frames) is more appropriate. We should also notice that
for sufficient length of temporal context, DBN with two hid-
den layers seems to achieve better performance.

To understand why deeper networks do not help for the
DBNSs in the second level, we should notice the distinction of
input features used between DBN in the first level and sec-
ond level. Input features for the MLP in the second level
were called posterior features in [9]. Posterior features have
two very important properties: sparseness and better linear
separability (over acoustic features) [9]. These two proper-
ties are the key reasons why tandem classifier approach ac-
tually works for the task of phoneme recognition. Acoustic
features do not have such good properties, so the complexity
of their distribution (which leads to highly-varying separation
surface) needs much deeper architecture to capture or sepa-
rate. In other words, the effectiveness of the number of hidden
layers is largely determined by the particularity of distribution
of data itself. So, to better utilize DBN, it’s quite necessary
to make clear the effects of the number of hidden layers for
specific applications.

5.3. Results

Table 1 compares the PERs between a single DBN that we’ve
used in the first level and the best two-level tandem DBN we
get. The best tandem DBN was chosen by it’s improvement
evaluated on the development set.

Table 1. PER of different architectures

‘ Architecture ‘ dev ‘ coretest ‘
single DBN 20.96% | 22.34%
two DBNs in tandem | 20.06% | 21.45%
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Fig. 3. PER of DBN in the second level on development set
as a function of number of hidden layers, using 2048 units per
hidden layer.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and investigated tandem DBN ar-
chitecture for phoneme recognition task. We focused on dis-
covering the best configuration of the DBN in the second lev-
el. Our experiments showed that for the DBN in the second
level, 230ms temporal context and two hidden layers are ap-
propriate, and the number of hidden units should be no less
than 2000. With such configuration, the phone error rate im-
proved 4% on coretest set compared with a single DBN.

The features we used for the DBN in the second level
is just normalized posterior probabilities generated from first
level DBN. But we have already known that DBN performs
significantly better if information tends to spread equally in
each dimension (e.g., fbank better than MFCC) [15]. So we
are currently seeking some kind of transformations that has
such good property (e.g., deep autoencoder [21]) to further
improve the performance of tandem DBN architecture.

7. RELATION TO PRIOR WORK

The work presented here proposed a new architecture based
on tandem DBN approach. The work in [4] uses DBN as a
replacement of traditional MLP in the hybrid HMM-MLP ar-
chitecture but not in hierarchical manner. While in works that
use tandem approach [8][9] only incorporate traditional MLP
but not DBN. More information of the relationship between
our work and the work in [9] can be found in section 3.
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