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ABSTRACT

Concussions are Mild Traumatic Brain Injuries (mTBI) that are
common in contact sports and are often difficult to diagnose due
to the delayed appearance of symptoms. This paper explores the
feasibility of using speech analysis for detecting mTBI. Recordings
are taken on a mobile device from athletes participating in a boxing
tournament following each match. Vowel sounds are isolated from
the recordings and acoustic features are extracted and used to train
several one-class machine learning algorithms in order to predict
whether an athlete is concussed. Prediction results are verified
against the diagnoses made by a ringside medical team at the time of
recording and performance evaluation shows prediction accuracies
of up to 98%.

Index Terms— Speech analysis, predictive models, health and
safety, concussion

1. INTRODUCTION

Mild Traumatic Brain Injury (mTBI) is a serious problem for many
athletes in the United States. In 2008, there were approximately
44,000 emergency department visits for sports-related mTBI [1].
Repeated concussions can cause risks such as dementia and Parkin-
son’s disease. In the U.S., TBI accounts for an estimated 1.6-3.8
million sports injuries every year [2] and nearly 300,000 concussions
are being diagnosed among young athletes every year [3]. Athletes
in sports such as football, hockey, and boxing are at a particularly
large risk, e.g., six out of ten NFL athletes have suffered concussions,
according to a study conducted by the American Academy of Neu-
rology in 2000. However, TBI is also very frequent among soldiers,
and is often called the “signature wound” of the Iraq and Afghanistan
wars. Recent insights that the neuropsychiatric symptoms and long-
term cognitive impacts of blast or concussive injury of U.S. military
veterans are similar to the ones exposed by young amateur Amer-
ican football players [4] have led to collaborative efforts between
athletics and the military, e.g., the United Service Organizations Inc.
recently announced that it will partner with the NFL to address the
significant challenges in effectively detecting and treating TBI. The
importance of new and novel ways to assess mTBI has become in-
creasingly important as a consequence. Tests which are easy to ad-
minister, accurate, and not prone to unfair manipulation are required
to assess mTBI. In this paper, the feasibility of using speech analy-
sis for detection and assessment of mTBI is studied. Vowel sounds
are isolated from speech recordings and the best acoustic features
which are most successful at assessing concussions are identified.
The remainder of this paper is structured as follows. In Section 2,

we describe prior efforts in studying brain injuries and their effects
on speech. In Section 3, we outline the nature of the speech record-
ings and the different vowel sounds they are comprised of. Section 4
describes the vowel extraction and classification procedure with re-
sults. Finally, Section 5 concludes the paper and describes future
work.

2. RELATED WORK

There have been several previous studies related to motor speech
disorders and their effects on speech acoustics. Theodoros et al.
conducted a study of the speech characteristics of 20 individuals
with closed head injuries (CHI) [5]. Their main result was that the
CHI subjects were found to be significantly less intelligible than nor-
mal non-neurologically impaired individuals, and exhibited deficits
in the prosodic, resonatory, articulatory, respiratory, and phonatory
aspects of speech production. Ziegler and von Cramon discovered an
increase in vowel formant frequencies as well as duration of vowel
sounds in persons with spastic dysarthria resulting from brain in-
jury [6]. In [7], a variation of the Paced Auditory Serial Addition
Task (PASAT) test, which increases the demand on the speech pro-
cessing ability with each subtest, is used to detect the impact of TBI
on both auditory and visual facilities of the test takers. Hinton et
al. [8] illustrated that tests on speech processing speed were affected
by post-acute mTBI on a group of rugby players. Recently, Tsanas
et al. used acoustic features of sustained vowels to classify Parkin-
son’s Disease with Support Vector Machines (SVM) and Random
Forests (RF), and showed that SVM outperformed RF [9]. Stud-
ies have also been conducted on the accommodation phenomenon,
where test takers tend to adapt or adjust to unfamiliar speech pat-
terns over time. Research has shown that accommodation is fairly
rapid for healthy adults [10, 11], and it is studied as a speed based
phenomenon in [12]. To the best of our knowledge, work investigat-
ing the effects of concussion on specific speech features like formant
frequencies, pitch, jitter, and shimmer, has not been researched ex-
tensively using real-world speech data before. This is also the first
study to address the feasibility of using the relationship between TBI
and speech to develop a more scientific and novel concussion assess-
ment technique.

3. DATA

Speech recordings were acquired under a protocol approved by the
Institutional Review Board (IRB) at the University of Notre Dame.
Speech data consisted of recordings taken from 105 male athletes
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before, during, and after participation in several matches of a box-
ing tournament. Subjects were recorded speaking a fixed sequence
of digits that appeared on screen every 1.5 seconds for 30 sec-
onds. Subjects spoke digit words in the following sequence: “two”,
“five”, “eight”, “three”, “nine”, “four”, “six”, “seven”, “four”, “six”,
“seven”, “two”, “one”, “five”, “three”, “nine”, “eight”, “five”, “one”,
“two”.

Each subject was recorded on a mobile tablet by a directional mi-
crophone. Several of the recordings contained background noise or
background speakers. Speech was sampled at 44.1 kHz with 16 bits
per sample in two channels and later mixed down to mono-channel
for analysis. The recordings were split into training/test data and
grouped into three classes: baseline (training), post-healthy (test),
and post-mTBI (test). Table 1 summarizes these classes and gives
the number of recordings in each class. A few speakers have record-
ings in both the post-healthy class and the post-mTBI class if they
were diagnosed with mTBI in a match following acquisition of the
post-healthy recordings. In such cases, the recordings were taken in
separate matches of the tournament. Thus, the number of test record-
ings is greater than the number of training recordings but both sets
of data are mutually exclusive.

Table 1. Classes of speech recordings.
Class of Speech n Description
baseline 105 Recorded prior to tournament; all

subjects healthy
post-healthy 101 Recorded following preliminary

match; subjects not diagnosed with
mTBI and assumed healthy

post-mTBI 7 Recorded at subject’s final match
of participation; subjects diagnosed
with mTBI

4. METHODS

4.1. Isolating vowel segments

Vowel segments were isolated from each speech recording by first
locating vowel onsets and then extracting 140 ms of speech for each
vowel sound, following each onset. Onsets were detected using an
adaptation of the method described by Hermes for onset detection
in isolated words [13]. This process yielded a total of 3786 vowel
sounds among each of the three classes of recordings. Table 2 shows
the number of segments isolated from each class of recordings. Note
that each class contains a different number of vowel sounds. This is
because the number of whole recordings differs for each class and
occasionally vowel onsets are missed during the isolation process.

4.2. Extracting features from vowels

Eight speech features were investigated in this study: pitch, for-
mant frequencies F1-F4, jitter, shimmer, and harmonics-to-noise
ratio (HNR). While jitter and shimmer are typically measured over
long sustained vowel sounds, recently the use of jitter over short-
term time intervals has shown promise in analyzing pathological
speech [14].

Pitch was estimated using autocorrelation and formants were es-
timated via FFT. LPC was avoided for formant estimation since it
can be prone to errors and because its accuracy depends heavily on
proper choice of pole order [15].

Table 2. Number of vowel sound instances isolated from each class
of speech recordings.

Sound baseline post-healthy post-mTBI
/i/three 150 160 10
/I/six 190 188 12
/e/eight 162 160 10
/E/seven 207 200 14
/2/one 205 189 13
/u/two 212 224 18
/o/four 204 202 14
/ai/five 313 302 21
/ai/nine 205 190 11

Fig. 1. The extraction of the /ai/ vowel sound from the recording of
a subject speaking “five”.

Jitter is a measure of the average variation in pitch between con-
secutive cycles, and is given by

Jitter =

PN
i=2 |Ti � Ti�1|

N � 1

where N is the total number of pitch periods and Ti is the duration
of the ith pitch period.

Shimmer is a measure of the average variation in amplitude be-
tween consecutive cycles, given by

Shimmer =

PN
i=2 |Ai �Ai�1|

N � 1

where N is the total number of pitch periods and Ai is the amplitude
of the ith pitch period.

4.3. One-class SVM for mTBI classification

Combinations of extracted features were selected as inputs to sev-
eral one-class SVM classifiers. The LIBSVM implementation [17]
was used. A one-class classifier was chosen because the baseline
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data did not include any mTBI speech and the number of recordings
in the post-mTBI class was significantly lower than the number of
recordings in post-healthy. Features were scaled to the ranges 0-1
by dividing each feature by the maximum value of that feature in the
training set. In order to find the optimal combination of features for
each vowel sound, each possible combination of at least three fea-
tures was used to train and test the classifier for each vowel sound.

4.4. Classification of individual vowel sounds

An individual classifier was trained for each vowel sound in the base-
line class. The /ai/ sound in the word “five” was treated separately
from the /ai/ sound in “nine”, because the consonantal context dif-
fers between these words, i.e., the /ai/ sound in “five” occurs be-
tween two fricatives while the /ai/ sound in “nine” occurs between
two nasal consonants. Each sound in the post-healthy and post-mTBI
classes was tested and the prediction results were used to compute
three standard performance measures: recall, precision, and accu-
racy. Recall gives the percentage of correctly predicted mTBI seg-
ments and is defined as

Recall =
# of segments correctly classified mTBI

Total # of true mTBI segments

Precision is the rate at which the mTBI predictions were correct,
and is defined as

Precision =
# of segments correctly classified mTBI

Total # of segments classified mTBI

Finally, accuracy is the percentage of segments that were classi-
fied correctly (either mTBI or healthy), and is defined as

Accuracy =
# correctly classified segments

Total # of segments

The classifier achieved accuracies approaching 70% for some
feature combinations and recall rates as high as 92% for other com-
binations. Table 3 shows the features that achieved maximum accu-
racy for each vowel sound. In any case where equal accuracies were
achieved for more than one feature combination, the combination
yielding the best recall is listed.

Table 3. Vowel sounds and features achieving maximum accuracy.
Vowel Recall Prec. Acc. Features*
/i/ 0.4 (4/10) 0.069 0.65 F3,F4,J ,H ,P
/I/ 0.5 (6/12) 0.11 0.71 F1,F4,S,H
/e/ 0.6 (6/10) 0.083 0.59 F4,J ,H
/E/ 0.5 (7/14) 0.089 0.63 F3,S,H ,P
/2/ 0.54 (7/13) 0.095 0.64 F4,S,H ,P
/u/ 0.61 (11/18) 0.11 0.59 F3,F4,J
/o/ 0.79 (11/14) 0.14 0.67 F1,F4,S
/ai/five 0.76 (16/21) 0.13 0.66 F1,F3,J ,S,H ,P
/ai/nine 0.64 (7/11) 0.097 0.66 F2,F3,F4

* Fn = frequency of formant n, J = jitter, S = shimmer,
H = harmonics-to-noise ratio, P = pitch frequency

Table 4 shows the feature combinations that achieved maximum
recall for each vowel sound. In any case where an equal recall was
achieved for more than one combination of features, the combina-
tion yielding the best accuracy is shown. In any case where multiple
feature combinations yielded equal maximum recalls and equal ac-
curacies, the combination with the fewest number of features was

chosen. In the case of the /e/ sound, two combinations yielded re-
calls of 80% and accuracies of 56%. In this case, all features from
both combinations were used despite a reduction in accuracy for that
sound by 3%.

Table 4. Vowel sounds and features achieving maximum recall.
Vowel Recall Prec. Acc. Features*
/i/ 0.9 (9/10) 0.11 0.55 F1,F3,S
/I/ 0.92 (11/12) 0.1 0.51 F1,F2,P
/e/ 0.8 (8/10) 0.093 0.53 F2,F4,S,P
/E/ 0.79 (11/14) 0.11 0.57 F2,J ,S
/2/ 0.77 (10/13) 0.1 0.55 F1,F4,P
/u/ 0.89 (16/18) 0.13 0.55 F2,F3,J ,S,P
/o/ 0.79 (11/14) 0.14 0.67 F1,F4,S
/ai/five 0.81 (17/21) 0.14 0.66 F1,F2,F3,J ,S,H ,P
/ai/nine 0.82 (9/11) 0.12 0.65 F1,F2,F3

* Fn = frequency of formant n, J = jitter, S = shimmer,
H = harmonics-to-noise ratio, P = pitch frequency

4.5. Classification of whole recordings

The classification of boxers’ speech recordings by using each vowel
can now be elaborated. A tradeoff between accuracy and recall can
be seen from Table 3 and Table 4 for most vowel sounds. In order to
keep false negatives to a minimum, a higher importance was placed
on recall of mTBI vowel sounds. Similarly to individual vowel
sound segments, performance of whole recording classification was
evaluated by measuring recall, precision, and accuracy measures.

Using the feature combinations that achieved maximum recall
for individual vowel sound segments (Table 4), individual one-class
SVM classifiers were again trained for each vowel sound in the base-
line class of recordings. Next, each speech recording in post-healthy
and post-mTBI was classified as a whole by classifying each instance
of a specific vowel sound from the recording. A threshold was
defined, �, such that the speech recording was classified as mTBI
speech if the following relationship holds true:

�  N(v)
M(v)

where N gives the number of instances of the vowel sound v clas-
sified as mTBI in the recording and M gives the total number of
instances of v that could be isolated in the recording. Several trials
were performed in which each recording was classified and perfor-
mance was measured with v as a different vowel sound for each trial,
i.e., each unique vowel sound corresponds to a single trial. For each
trial, � was adjusted until recall of mTBI recordings reached 100%.
The corresponding value of � is shown in Figure 2.

A final classification trial was performed in which all vowel
sounds were aggregated such that a recording is classified as mTBI
speech if

� 

P
v2V

N(v)

P
v2V

M(v)

holds true, where V is the set of all vowel sounds isolated from
that recording. Figure 2 compares performance measurements and
shows the minimum � for each trial that resulted in recall of all seven
mTBI recordings. The “All” trial in Figure 2 shows the performance
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Fig. 2. Performance measurements for each classification trial and
minimum � yielding 100% mTBI recall.

measures for the aggregate trial along with the corresponding � that
achieved 100% recall of mTBI recordings.

Figures 3 - 5 show the recall, precision, and accuracy measure-
ments, respectively, as the value of � was adjusted in the aggregate
trial. It can be seen that as � increases, recall decreases while preci-
sion and accuracy tend to increase.

For the aggregate trial, � = 0.75 resulted in best accuracy while
still recalling all mTBI recordings. A value of � = 0.75 means
that when the classification system encounters a speech recording
in which more than 75% of all isolated vowel sound segments are
classified mTBI, the entire recording is classified mTBI. This � was
able to recall all seven mTBI recordings with an accuracy of 0.982
and precision of 0.778.
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Fig. 3. Recall measurements for increasing values of � in aggregate
vowel sounds trial.

5. CONCLUSIONS AND FUTURE WORK

By using speech analysis on isolated vowel sounds extracted from a
mobile application test, the vowel acoustic features that give the best
recall and accuracy measures in identifying concussed athletes are
identified. In future work various combinations of vowel sounds and
acoustic features will be studied to select the most effective � values.
Further noise reduction techniques will be studied and applied to the
recordings to give samples that are ideal for extraction of the vowel
sounds and features. An implementation of vowel sounds analysis
for concussion classification in real time using a cloud-based feed-
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Fig. 4. Precision measurements for increasing values of � in aggre-
gate vowel sounds trial.
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Fig. 5. Accuracy measurements for increasing values of � in aggre-
gate vowel sounds trial.

back approach is anticipated in the future. This would help side-
line physicians at contact sports to instantly identify suspected con-
cussion cases. A newer test using monosyllabic and multisyllabic
words rather than numbers is being developed for this purpose. This
test will emphasize words with the vowel sounds and their acous-
tic features identified as the most successful in assessing concussive
behavior in our research.
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