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ABSTRACT

The general aim of this work is to learn a unique statistical signa-
ture for the state of a particular speech pathology. We pose this as
a speaker identification problem for dysarthric individuals. To that
end, we propose a novel algorithm for feature selection that aims to
minimize the effects of speaker-specific features (e.g., fundamental
frequency) and maximize the effects of pathology-specific features
(e.g., vocal tract distortions and speech rhythm). We derive a cost
function for optimizing feature selection that simultaneously trades
off between these two competing criteria. Furthermore, we develop
an efficient algorithm that optimizes this cost function and test the
algorithm on a set of 34 dysarthric and 13 healthy speakers. Results
show that the proposed method yields a set of features related to the
speech disorder and not an individual’s speaking style. When com-
pared to other feature-selection algorithms, the proposed approach
results in an improvement in a disorder fingerprinting task by select-
ing features that are specific to the disorder.

Index Terms— speech pathology, dysarthria, machine learning,
feature selection

1. INTRODUCTION

Intelligibility of patients with speech pathologies is currently
assessed through subjective tests performed by trained speech-
language pathologists. Subjective tests, however, tend to be incon-
sistent, costly and, oftentimes, not repeatable. In fact, research has
shown poor inter- and intra-rater reliability in clinical assessment.
Furthermore, clinicians working with patients form a bias based on
their interactions, resulting in intelligibility assessment of limited
validity and reliability [1–4]. The goal of our work is to augment
speech language pathologists with a digital signature of an individ-
ual’s speech pathology state. This signature can then be tracked
over time to assess the efficacy of the provided treatment, or the
progression of a disease state. In this paper, we propose a novel fea-
ture selection algorithm that identifies a series of pathology-specific
features while attempting to minimize speaker-specific effects.

We pose this problem as a speaker identification problem for
dysarthric individuals. Principal differences between different
speakers arise from differences in their speaking style and dif-
ferences in the speech manifestation of their neurological disorder.
We propose an algorithm that selects features that mostly contribute
to the differences in speech pathology rather than speaking style.
More specifically, we select acoustic features that discriminate well
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Fig. 1. The PDF of the average pitch (Hz) modeled as a normal
distribution for (a) two dysarthric speakers (b) two healthy speakers.
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Fig. 2. The PDF of the Pairwise Variability at 2000 Hz modeled as
a normal distribution for (a) two dysarthric speakers (b) two healthy
speakers.

between dysarthric individuals, but provide minimal separation be-
tween healthy speakers. This results in a feature set that focuses
on acoustic cues capturing differences in disorder rather than differ-
ences in speaking style. Consider the following example illustrated
by Fig. 1 and Fig. 2 as motivation, which shows the distribution
of two features (pitch period and pairwise energy variability) for
2 dysarthric and 2 healthy speakers, respectively. It is clear from
Fig. 1 that the pitch period provides significant separation between
the two dysarthric speakers, however it also provides separation
between the healthy speakers. Alternatively, as is apparent from
Fig. 2, the pairwise frame energy variability provides significant
separation between the two dysarthric speakers, but has significant
overlap for the healthy speakers. This is a feature that analyzes the
variability in energy between consecutive 20 ms frames in the octave
band centered at 2 kHz. With this, we conclude the pairwise energy
variability measures are sensitive to certain aspects of the speech
pathology, whereas the pitch metrics are sensitive to speaking style.
The general aim of this work is to extend this example by designing
an algorithm that selects features that are more sensitive to certain
aspects of speech pathology rather than speaking style.

The literature contains limited work in this area. In [5], the au-
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thors rely on rhythm metrics estimated through envelope modula-
tion spectra to classify between different dysarthria types. In [6]
the authors make use of acoustic cues to detect Parkinson’s disease
using only speech. In [7–9] the authors develop an algorithm for as-
sessing intelligibility using a regression scheme that makes use of a
number of acoustic cues. In [9–12] the authors present a number of
schemes for assessing speech quality and intelligibility by compar-
ing to a clean reference signal. This paper is fundamentally different
from the previous work, as we are not interested in discriminating
between dysarthria types or predicting intelligibility. The goal here
is to identify a set of features that act as a signature for the state of
a speech pathology in an individual. Toward this end, we derive a
cost function for selection of features and develop an efficient algo-
rithm for solving it (Section 2). Following, we provide comparative
results and show the efficacy of our proposed technique (Section 3).
In Section 4, we provide concluding remarks.

2. FEATURE SELECTION

The goal of our research here is to design an algorithm which takes
a large set of features and selects a subset of features that act as a
signature for the state of a speech pathology. In order to develop
this algorithm, we next introduce our feature sets, define our cost
function, and define an efficient algorithm for solving it.

2.1. Feature Description

Although Mel-Frequency Cepstral Coefficients (MFCCs) have been
the prevalent feature used for automatic speech recognition for over
30 years [13, 14], our feature set is composed of three different
types of features more commonly found in the study of pathological
speech: Envelope Modulation Spectra (EMS) features, Long-Term
Average Spectra (LTAS) features, and ITU P.563 features. We
discuss these below.
EMS - The envelope modulation spectrum (EMS) is a representation
of the slow amplitude modulations in a signal and the distribution of
energy in the amplitude fluctuations across designated frequencies,
collapsed over time [5]. It has been shown to be a useful indicator
of atypical rhythm patterns in pathological speech [5]. The speech
segment, x(t), is first filtered into 7 octave bands with center fre-
quencies of 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. Let
hi(t) denote the filter associated with the ith octave. The filtered
signal xi(t) is then denoted by,

xi(t) = hi(t) ∗ x(t). (1)

The envelope in the ith octave, denoted by envi(t), is extracted by:

envi(t) = hLPF(t) ∗ H{x(t)} (2)

where, H{·} denotes the Hilbert transform and hLPF(t) is the im-
pulse response of a 20 Hz low-pass filter. Once the amplitude en-
velope of the signal is obtained, the low-frequency variation in the
amplitude levels of the signal can be examined. Fourier analysis is
used to quantify the temporal regularities of the signal. With this, six
EMS metrics are computed from the resulting envelope spectrum for
each of the 7 octave bands, xi(t), and the full signal, x(t): 1) peak
frequency; 2) peak amplitude; 3) energy in the spectrum from 3-6
Hz; 4) energy in spectrum from 0-4 Hz; 5) energy in spectrum from
4-10 Hz; and 6) energy ratio between 0-4 Hz band and 4-10 Hz band.
This results in a 48-dimensional feature vector denoted by fEMS.
LTAS - The long-term average spectrum (LTAS) features capture
atypical average spectral information in the signal [15]. Nasality,

breathiness, and atypical loudness variation, all of which are com-
mon causes of intelligibility deficits in pathological speech, present
themselves as atypical distributions of energy across the spectrum;
LTAS attempts to measure these cues in each octave. For each of
the 7 octave bands, xi(t), and the original signal, x(t), the LTAS
features set consists of the: 1) average normalized RMS energy; 2)
RMS energy standard deviation; 3) RMS energy range; and 4) pair-
wise variability of RMS energy between ensuing 20 ms frames. This
results in a 28-dimensional feature vector, denoted by fLTAS.

P.563 - The ITU-T P.563 standard for blind speech quality assess-
ment [16] is designed to measure speech quality using a parameter
set that measures atypical and unnatural voice and articulatory qual-
ity. There are five major classes of features deemed appropriate for
our purposes: 1) fbasic - basic speech descriptors, such as pitch and
loudness information; 2) fVT - vocal tract analysis, including statis-
tics derived from estimates of vocal tract area based on the cascaded
tube model; 3) fstat - speech statistics, which calculate the skewness
and kurtosis of the cepstral and linear prediction coefficients (LPC);
4) fSNR - static SNR, measurements of signal-to-noise ratio, esti-
mates of background noise, and estimates of spectral clarity based
on a harmonic-to-noise ratio; and 5) fsegSNR - segmental SNR, or
dynamic noise, where the SNR is calculated on a frame-by-frame
basis. In the standard, a subjective rating (MOS, or Mean Opinion
Score), is obtained through a non-linear combination of the above
features. Here, we make use of the same feature set for our analysis,
by combining all feature sets into one vector, fVCL. For a detailed
description of each feature, including the mathematical derivation,
please refer to [12, 16].

2.2. Cost Function Derivation

We aim to select acoustic features that discriminate well between
dysarthric individuals, but that provide minimal separation between
healthy speakers, as this is indicative of sensitivity to speech pathol-
ogy and not speaking style. More specifically, given a complete set
of features (F ) ∈ RD , we aim to select the optimal subset Ω of car-
dinality k, such that the learning error between the dysarthric speak-
ers in a speaker ID task is minimized and the error between healthy
speakers in the same task is minimally effected.

We start by considering the simple example of 2 dysarthric
speakers and 2 healthy speakers, with feature matrices and binary
label vectors given by (XD , yD) and (XC , yC ) respectively. We
model the posterior probability of a dysarthric speaker with the
sigmoid hθ(xD) = 1

1+e−θ
T xD

:

P (yD = 1|xD; θ) =
1

1 + e−θT xD
(3)

We can write this more succinctly:

P (yD|xD; θ) = (hθ(xD))yD (1− hθ(xD))(1−yD) (4)

Given ND independent training points for the two dysarthric speak-
ers, the log-likelihood of the parameters for the dysarthric speakers
can be written as:

lD(θ|XD,yD) =

ND∑
i=1

y
(i)
D log hθ(X

(i)
D )

+ (1− y
(i)
D ) log (1− hθ(X(i)

D ))

(5)
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Algorithm 1 Greedy Algorithm for Feature Selection
Input: Features and labels for dysarthric and healthy

speakers: XD , yD , XC , yC
Output: Top k features that optimize criteria in (7): Ω
Define: f(Ω) = maxθ lD(θ|XD(Ω),yD)

maxζ lC(ζ|XC(Ω),yC)

Ω = ∅
F = 1 . . .M

for j ∈ 1 . . . k do
J = ∅
for Fi ∈ F \ Ωj do

J(Fi) = f(Ω ∪ Fi)
end for
Ω = Ω ∪ {argmax

Fi

J(Fi)}

end for

Similarly, we model the log-likelihood of the healthy speaker set:

lC(ζ|XC ,yC) =

NC∑
i=1

y
(i)
C log hζ(X

(i)
C )

+ (1− y
(i)
C ) log (1− hζ(X(i)

C ))

(6)

Our goal is to find the subset of features that maximize the max-
imum likelihood of the dysarthric feature set, while simultaneously
minimizing the maximum likelihood of the healthy speaker set. This
results in features that accurately model the dysarthric speakers by
selecting features that are specific to the disorder rather than speak-
ing style. We formulate the following cost function:

max
Ω

maxθ lD(θ|XD(Ω),yD)

maxζ lC(ζ|XC(Ω),yC)

s. t. card(Ω) = k.

(7)

In simpler terms, the cost function aims to find the subset of fea-
tures that provide minimal logistic regression error for the dysarthric
feature set, while maximizing the logistic regression error for the
healthy set. This results in features that provide good classifica-
tion performance for the dysarthric speakers by focusing on features
that do not provide good classification performance on the healthy
speaker set. Although the analysis here is provided for the case of
2 speakers, we can easily extend this framework to multinomial lo-
gistic regression [17]. In fact, in Section 3, we demonstrate this
framework on a set of 53 dysarthric and 13 healthy speakers.

2.3. Feature Selection Algorithm

The cost function in Eq. (7) is a good model for the task at hand;
however it is difficult to solve since it optimizes over subsets of fea-
tures. We approximate it using the greedy algorithm in Alg. 1.

We aim to select the top k features, denoted by Ω, from the
complete set of features, denoted by F , that maximize the criteria in
Eq. (7). Using a greedy approach we iteratively select the features
that provide the greatest increase in the cost function. More specifi-
cally, at iteration i, we update the optimal subset using the following
criteria:

Ω = Ω ∪ {argmax
Fi

f(Ω ∪ Fi)}, (8)

where f(Ω) denotes the cost function in Eq. (7) and Fi ∈ F \ Ω. A
more detailed implementation is shown in Algorithm 1.
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Fig. 3. Error Probability for speaker ID using features selected using
Alg. 1 for (a) the dysarthric speaker set (b) the healthy set

3. RESULTS AND DISCUSSION

The feature selection algorithm described in Section 2 was imple-
mented in MATLAB, and was used to select the top 12 features from
the features in Section 2.1. A set of 34 dysarthric speakers and 13
healthy speakers were used in the study. Multinomial logistic re-
gression was used to model the data for the dysarthric and healthy
speakers [17]. The speakers were selected from a pool, collected
for a larger study conducted in the Motor Speech Disorders Labora-
tory at Arizona State University. The dysarthria speakers included:
12 speakers with ataxic dysarthria, secondary to cerebellar degenera-
tion, 10 mixed flaccid-spastic dysarthria, secondary to ALS, 8 speak-
ers with hypokinetic dysarthria secondary to idiopathic Parkinson’s
Disease, and 4 speakers with hyperkinetic dysarthria secondary to
Huntington’s disease. Each speaker provided speech samples, in-
cluding a reading passage, phrases, sentences, and conversational
speech. While varied, the speech collection session resulted in ap-
proximately 10 minutes of recorded material per speaker, with a
sampling rate of 16 kHz. The material was split into individual sen-
tences and the features in Section 2.1 were extracted at the sentence
level.

The minimum cross-validation error for the dysarthric set and
the control set were used as proxies for log-likelihoods in (7). Fig 3
shows the multinomial logistic regression error for the dysarthric (34
speakers) and healthy (13 speakers) speaker feature sets after each
iteration of feature selection. As shown in Fig. 3, the error for both
sets drops as more features are selected. Although the final error
values seem to indicate a similar error rate for both the dysarthric
( 37% error) and healthy speakers ( 40% error), it is important to
note that the dysarthric set contains a total of 34 speakers, whereas
the healthy speaker set contains only 13 speakers.

Table 1 shows the 12 selected features using the proposed al-
gorithm as well as 12 features selected when using logistic regres-
sion for speaker identification (e.g. maximizing only the numera-
tor in (7)). Here we provide a brief description of the selected fea-
tures, for a more detailed discussion on computation of these fea-
tures see [12,16] and [5]. The EMS and LTAS features are extracted
at different sub bands as well as for the whole signal, hence the nu-
meric subscript in each feature’s name corresponds to the center fre-
quency of the octave band. The EMS features that were selected
consist of: Ratio40 the energy ratio between 0-4 Hz band and 4-10
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Table 1. Selected Features
Speaker ID Features Disorder Fingerprinting

(Proposed Approach)
Ratio40 all Ratio40 8000

nsd125 PV8000
Above40 all PV2000

fPitchAverage fSpecLevelDev
Peak Amp 125 sd1000
Below40 125 Above40 all
E3 6Hz 125 Ratio40 all

Peak Freq 125 Peak Freq 125
Ratio40 125 E3 6Hz 125

Peak Amp 250 Peak Amp 125
Peak Freq 250 Below40 125
Above40 125 Above40 125

Hz band; Peak Amp and Peak Freq the peak frequency and corre-
sponding peak amplitude in a particular sub band; Above40 and Be-
low40 the amount of energy in the spectrum below 4 Hz and above
4 Hz; and E3 6 the energy in 3-6 Hz band. The LTAS features
that were selected consist of: PV the pairwise variability of RMS
energy between ensuing 20 ms frames; nsd and sd the normalized
and unnormalized RMS energy standard deviation. The P.563 fea-
tures that were selected consist of: fPitchAverage the average pitch;
fSpecLevelDev the standard deviation in the band between 1-2 kHz.

Utilizing the proposed algorithm, the features that are most use-
ful in minimizing speaker-specific discrimination, while maximizing
disorder-specific discrimination tap features of rate, rhythm, and mo-
tor control patterns (i.e. top ten features identified in the analysis).
For instance, features of EMS in the octave band centered around
125 Hz, including the peak frequency, amplitude of the peak fre-
quency, and energy between 3 and 6 kHz, were all identified as im-
portant for completing this task. This is not surprising as this range
is well correlated with speaking rate. Similarly, the energy above 4
kHz and the ratio of the energy above and below 4 kHz for the whole
speech signal offers another representation of the rate of the speech
signal. The ratio of energy above and below 4 kHz in the octave
band centered around 8000 Hz was previously noted as a variable
responsible for global distinction of dysarthria type [5], and offers
an insight into the global distinction of the different types of speech
patterns, related to the speech patterns, allowing for more idiosyn-
cratic differences to be revealed through the features described above
and below.

The LTAS and P.563 features offer information related to the
fine- motor control patterns of the speakers. Features of LTAS, in-
cluding pairwise variability indices in the 2000 and 8000 Hz oc-
tave bands quantify what is believed to represent articulatory preci-
sion and imprecision, respectively. These measurements quantify the
change, or consistency, of energy present in 20-ms windows of the
speech signal; therefore, we would expect changes in energy to offer
distinct representation of a given phoneme (i.e. precise articulation).
Interestingly, the P.563 feature most important for successful speaker
identification was SpecLevelDev. This measurement quantified the
variability of the speech signal between 1000 and 3000 Hz. Given
the similarity of the pairwise variability indices, and complementary
nature of the frequency range, this measurement, too, is proposed to
be related to the articulatory precision with which the speech sample
was spoken. Compared to the traditional speaker identification algo-
rithms, the features identified by the proposed algorithm utilize more
pathology, disorder-specific features. The traditional speaker iden-
tification algorithm utilizes more speaker-specific features. While

there is some overlap in the features selected by both, there are key
differences.For instance, the Speaker ID regression algorithm selects
average pitch early on in the selection process, suggesting associa-
tion with specific speakers. Alternatively, the P.563 and LTAS fea-
tures selected with the proposed algorithm are sensitive to articula-
tory precision and imprecision, reflective of the motor productions
specific to speech pathology.

4. CONCLUSION

In this paper, we propose a novel algorithm for feature selection that
minimizes the effects of speaker-specific features and maximize the
effects of disorder-specific features. The selected features therefore
represent a digital signature of an individual’s speech pathology state
which can then be tracked over time to assess the efficacy of the
provided treatment, or to sensitively track speech changes resulting
from disease progression. Furthermore, we test the algorithm on a
set of 34 dysarthric and 13 healthy speakers. Utilizing the proposed
algorithm, selected features mostly include those corresponding to
rate, rhythm, and motor control. The features selected correspond
with those that are most perceptually salient in motor speech disor-
ders, yet not isolable with a single acoustic metric. The combination
of features utilized in the present investigation offers a complemen-
tary, non-redundant representation of the disrupted aspects of the
speech signal. Given the instability and unreliability of subjective
assessment, an objective measure of this nature is critical in the de-
velopment of a gold standard for care.
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