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ABSTRACT

In this paper, we present a generic methodology to detect non-
linguistic vocalizations using ALISP (Automatic Language
Independent Speech Processing), which is a data-driven audio
segmentation approach. Using Maximum Likelihood Linear
Regression (MLLR) and Maximum A Posterior (MAP) tech-
niques, the proposed method adapts ALISP models, which
then facilitate detection of local regions of nonlinguistic vo-
calizations with the standard Viterbi decoding algorithm. We
also illustrate how a simple majority voting scheme, using
a sliding window on ALISP sequences, can be helpful in
eliminating outliers from the Viterbi-predicted sequence au-
tomatically. We evaluate the performance of our method on
detection of laughter, a nonlinguistic vocalization, in compar-
ison with global acoustic models such as GMMs, left-to-right
HMMs and ergodic HMMs. The results indicate that adapted
ALISP acoustic models perform better than global acous-
tic models in terms of F -measure. Moreover, our majority
voting scheme on ALISP-sequences further improves the
performance yielding, in total, an increase of 19.6%, 8.1%
and 5.6% on the F -measure against global acoustic models
GMMs, left-to-right HMMs, and ergodic HMMs respectively.

Index Terms— ALISP sequencing, acoustic models, au-
dio segmentation, model adaptation

1. INTRODUCTION

Despite the best efforts made over past two decades in speech
recognition systems, detection of nonlinguistic vocalizations
such as laughter, sighs, breathing, or hesitation sounds is still
a challenging task [1]. Such vocalizations are most frequent
vocalizations in our daily conversational speech. Detection
of the presence of these vocalizations is useful in several
disciplines; for example, in affective computing. Moreover,
automatic speech recognition systems also require detection
of nonlinguistic vocalizations to improve the performance.

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 270780. The second author is financially supported by the
ANR-SurfOnHertz project.

Traditional speech recognition frameworks have not been
adequately focussed on detecting nonlinguistic vocalizations
such as laughs, sighs, hesitation sounds under a common and
generic framework. One of the main reasons is that obtaining
phonetic representation or a pronunciation dictionary for such
vocalizations is an incredibly difficult task.

Laughter is one of the complex nonlinguistic vocaliza-
tions [2] that conveys a wide range of messages with differ-
ent meanings. Most of previous studies (e.g. [3, 4, 5]) on
automatic laughter detection from audio are based on frame-
level acoustic features as parameters to train machine learn-
ing techniques, such as Gaussian Mixture Models (GMMs),
Support Vector Machines (SVMs). Schuller et al. [6, 1]
show that integrating likelihood features derived from Non-
negative Matrix Factorization into Bidirectional Long Short-
Term Memory Recurrent Neural Networks provides better re-
sults in terms of discriminating nonlinguistic vocalizations
from speech. However, segmental approaches that capture
higher-level events have not been adequately focussed due to
the nonlinguistic nature of laughter.

In this paper, we present a generic framework to detect
nonlinguistic vocalizations using ALISP-based approaches [7],
which have been successfully applied for speaker verifica-
tion [8], or low bit-rate coding [9]. The main advantages of
these approaches are not only purely data-driven, but also
they can segment any audio signal into pseudo-phonetic units
and provide corresponding segment labels, referred to as
‘ALISP sequencing’. Our method adapts the ALISP segmen-
tal models using Maximum Likelihood Linear Regression
(MLLR)[10] and Maximum A Posterior (MAP)[11, 12] tech-
niques. The resulting adapted models can then be used to
detect local regions of nonlinguistic vocalizations, using
the standard Viterbi algorithm. Experiments on a laughter-
annotated audio corpus show the usefulness of the proposed
method.

The paper is organized as follows: Section 2 explains the
proposed methodology to detect any type of nonlinguistic vo-
calizations, while in Section 3, experimental evaluation of the
proposed method, on an laughter-annotated corpus, is pre-
sented. Conclusions follow in Section 4.
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Fig. 1. Workflow of the proposed methodology for ALISP-
based acoustic model adaptation to detect nonlinguistic vo-
calizations (’Laughter’ is used as an example for a specific
set of nonlinguistic vocalizations)

2. METHODOLOGY

This section describes our generic framework on detection
of nonlinguistic vocalizations using ALISP sequencing. The
main intension behind the proposed methodology is to adapt
ALISP segmental HMMs in order to facilitate Viterbi decod-
ing algorithm to detect similar regions from audio. The work-
flow of the framework can be broadly divided into two stages:
(i) training ALISP models on huge unlabeled audio corpus;
(ii) adaptation of ALISP models using MLLR and MAP ap-
proaches. This is illustrated in Figure 1, which shows the
workflow of the proposed methodology for the specific exam-
ple of detecting laughter vocalizations from audio. Laughter
vocalizations are used as adaptation data to model laughter
specific segmental HMMs, while nonlaughter audio (i.e. au-
dio excluding laughter vocalizations) is used for getting non-
laughter specific segmental HMMs. Finally, a combined set
of HMMs are used to discriminate laughter from audio with
the help of Viterbi decoding algorithm.

2.1. ALISP training

ALISP training is an established technique to train seg-
mental HMMs in an unsupervised approach. As explained
in [7, 8, 9], the set of ALISP models is automatically ac-
quired from unlabeled audio corpus through parameteriza-
tion, temporal decomposition, vector quantization, and Hid-
den Markov Modeling. This set of ALISP models can be
used to transform a new incoming audio data in a sequence
of ALISP symbols.

After the parameterization step, temporal decomposition
is used to obtain an initial segmentation of the audio data into

quasi-stationary segments. This method was introduced origi-
nally by Atal [13] as a nonuniform sampling and interpolation
procedure for efficient parameter coding. The detailed algo-
rithm to find interpolation functions can be found in [14].

The next step in the ALISP process is the unsupervised
clustering procedure performed via Vector Quantization [15].
This method maps the P-dimensional vector of each segment
provided by the temporal decomposition into a finite set of L
vectors. Each vector is called a code vector or a codeword
and the set of all the codewords is called a codebook. The
codebook size L defines the number of ALISP units.

The final step is performed with the Hidden Markov Mod-
eling procedure. The objective here is to train robust mod-
els of ALISP units on the basis of the initial segments re-
sulting from the Temporal Decomposition and Vector Quan-
tization steps. HMM training is performed using the HTK
toolkit [16]. It is mainly based on Baum-Welch reestimations
and on an iterative procedure of refinement of the models. A
dynamic split of the state mixtures is used to fix the number
of Gaussians of each ALISP model. After this training step is
over, one obtains a set of ALISP segmental HMMs.

2.2. ALISP segmentation and model adaptation

The acquired ALISP models, in the previous step, can be
used for pseudo-phonetic sequencing. In the current step,
we adapt ALISP models for detecting local regions of non-
linguistic vocalizations by providing some supervised adapta-
tion data. Firstly, ALISP models segment the adaptation data
and acquire segment labels as shown in Figure 1. Next, us-
ing the segment labels and adaptation data, MLLR adaptation
approach is applied to estimate a set of linear transformations
for the mean and variance parameters for reducing mismatch
between the initial ALISP models and the adaptation set. Fi-
nally, the model is further adapted using MAP approach con-
sidering MLLR adapted model as a prior knowledge. There-
fore, adaptation of ALISP models uses MLLR followed by
MAP approaches.

We propose to adapt ALISP models for specific nonlin-
guistic vocalizations that need to be detected as well as for
the remaining data excluding the vocalizations. In this way,
the models are expected to deviate from each other in dis-
criminating nonlinguistic vocalizations from speech. Figure
1 considers laughter as one of the nonlinguistic vocalizations.
As shown in the figure, the adaptation is performed on the an-
notated laughter vocalizations as well as on the nonlaughter
part of audio corpora excluding laughter vocalizations.

2.3. Viterbi decoding and symbolic-level smoothing

The Viterbi algorithm [17], a well-established technique for
decoding an HMM sequence of states, is used in order to
transform an observed sequence of speech features into a
string of recognized ALSIP units. In this work, a combined
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set of adapted ALISP models are used to discriminate non-
linguistic vocalizations from speech. Therefore, the labels of
ALISP sequences that are generated from the Viterbi decod-
ing are expected to follow a naming convention in order to
support symbolic level post processing.

The other main advantage of segmental HMMs is a pos-
sibility to operate on the level of symbols and sequences.
The outliers in the Viterbi decoded sequence can be post-
processed using contextual label information. This method
proposes a simple voting scheme that uses a sliding win-
dow on an ALISP sequence to eliminate outliers in Viterbi-
predicted sequence automatically. The sliding window counts
‘yes/no’ votes depending on whether or not a symbol belongs
to target vocalization. The window length is always expected
to be an odd number and the result of majority votes decides
if the middle segment is a part of nonlinguistic vocalization.

3. EXPERIMENTAL EVALUATION

In this section, we describe an experimental evaluation of the
proposed method when compared to global acoustic models
in discriminating laughter from speech. Firstly, we describe
the laughter-annotated experimental corpus and features used
for the experimentation. Secondly, we model global HMMs
(i.e. laughter versus nonlaughter models) as well as segmental
HMMs by adaption of ALISP models, as described in Section
2, on laughter and nonlaughter training datasets. In addition,
a combined set of laughter and nonlaughter ALISP segmental
HMMs are used together to segment the test data set using the
Viterbi algorithm. Consequently, the symbolic-level smooth-
ing is applied to eliminate outliers from the predicted ALISP
sequences. Finally, the results of our method are analyzed.

3.1. Experimental corpus and features

As explained in Section 2, this method is a two-stage method-
ology that requires two different corpuses. In the first stage,
ALISP model training is done with approximately 240 hours
of speech corpus selected from 26 days of complete broad-
cast audio of 13 French radio streams. The second stage re-
quires supervised training material for nonlinguistic vocaliza-
tions that has manual annotation. We used a combined audio
corpus that contains gold-standard laughter annotations from
three different sources SEMAINE-DB [18], AVLaughterCy-
cle [19], and Mahnob laughter databases [20]. The corpus is
an appropriate mix of hilarious and conversational laughter

Laughter [sec] nonlaughter [sec]
Training 3943 4957
Test set 853 1206
Total 4796 6163

Table 1. Training and test data sets used for experimentation

Fig. 2. Global HMM topologies: (a) Simple GMM; (b) Serial
(left-to-right) HMM; (c) Ergodic (fully-connected) HMM.

vocalizations. The data is uniformly divided into approxi-
mately 80% for training and 20% for testing. Table 1 shows
the size of laughter and nonlaughter audio (in seconds) used
for training and testing.

A standard set of features that are typical for automatic
recognition systems have been used throughout this work
in order to facilitate a fair comparison among different ap-
proaches. The parameterization of audio data is done with
Mel Frequency Cepstral Coefficients (MFCC), calculated on
20 ms windows, with a 10 ms shift. For each frame, a Ham-
ming window is applied and a cepstral vector of dimension
15 is computed and appended with first order deltas.

3.2. Global acoustic models vs. Adapted ALISP models

In order to detect laughter vocalizations from speech, we have
trained global acoustic models such as GMMs, serial HMMs
and ergodic HMMs with different HMM topologies, as shown
in Figure 2. All of the above global acoustic models include
an additional silence model.

ALISP segmentation models were trained with 240 hours
of unlabeled radio corpus. In this work, the unlabeled audio
corpus is modeled by a set of 32 ALISP segmental HMMs
(i.e. pseudo-phonetic HMMs) along with a silence model.
This set can be considered as an universal acoustic model be-
cause of its training database includes all possible sounds like
music, laughter, advertisements etc. This set of models can be
used not only for segmenting any audio, but also for getting
pseudo-phonetic (symbolic) transcription. In order to repre-
sent ALISP segments, the segmentation system uses 32 AL-
ISP symbols (such as HA, HB and H4), referring each of the
segmental HMMs, in addition to a silence label (Hsil). Fig-
ure 3 shows an example of the segmentation task performed
by the ALISP segmental HMMs on an unseen laughter vocal-
ization.

In the next step, we adapt the generic ALISP segmental
HMMs into: (i) laughter specific ALISP segmental HMMs by
using laughter vocalizations as adaptation data; (ii) nonlaugh-
ter specific ALISP segmental HMMs considering nonlaugh-
ter vocalizations (audio excluding laughter vocalizations) as
adaptation data. In order to facilitate combining the two sets,
laughter-specific adapted models are renamed such that HA to
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Fig. 3. Segmentation task performed on an unseen laughter vocalization by: (i) generic ALISP HMMs before model adaptation
(top row labels that are in Red); (ii) Combined set of specific (or adapted) ALISP HMMs after MLLR+MAP adaptation (i.e.
ALISP-adapt) (bottom row labels that are in Blue). The marked symbol with a circle is an outlier which can be automatically
found using proposed smoothing scheme on ALISP sequences.

LHA, H4 to LH4, and so on. On the other hand, nonlaughter
specific adapted models keeps the same names such as HA,
H4, HB, etc. The combined set of the models (say ALISP-
adapt) were used to discriminate local regions of laughter.
As shown in Figure 3, laughter specific regions seemed to
be detected by the model except some outliers. In order to
eliminate these outliers a majority voting scheme has been
proposed in Section 2.3. We experimented the smoothing
scheme using sliding window size 3 (ALISP-adapt-sm3) and
5 (ALISP-adapt-sm5). According to the scheme, for example,
the outlier (H4) in Figure 3 get majority ‘yes’ votes in case of
laughter detection if sliding window size is either 3 or 5. Such
a way, we can automatically detect and eliminate the outliers.

3.3. Results and discussion

Table 2 shows the precision, recall and F -measures ob-
tained from different approaches to detect laughter on test
set. Among the global acoustic models, ergodic HMMs per-
formed better than GMMs and serial (left-to-right) HMMs;
ergodic HMMs showed high precision (92.8%) in locating
laughter regions, whereas serial HMMs were relatively good
in recall (86.3%) rates. When compared with adapted ALISP
segmental HMMs (ALISP-adapt), global ergodic HMMs are
still 4.2% better in precision. However, the segmental HMMs
(ALISP-adapt) still performed better in terms of overall accu-
racy (F -measure) when compared to global HMMs.

Adapted ALISP HMMs provided an additional flexibil-
ity to find outliers with the help of a simple majority voting
scheme. Therefore, ALISP-adapt-sm3 and ALISP-adapt-sm5
showed improvement in terms of F -measure when compared
to ALISP-adapt by 2.9% and 4.4% of respectively. Overall,
ALISP-adapt-sm5 showed 94.3% precision and 93.9% recall

rates and performed relatively better than all other approaches
experimented in this work.

[%] Precision Recall F -measure
GMMs 70.8 78.6 74.5
Serial HMMs 85.7 86.3 86.0
Ergodic HMMs 92.8 84.5 88.5
ALISP-adapt 88.6 90.9 89.7
ALISP-adapt-sm3 92.4 92.7 92.6
ALISP-adapt-sm5 94.3 93.9 94.1

Table 2. Frame-wise laughter detection results on the test set

4. CONCLUSION

In this paper, we proposed a generic approach for detect-
ing nonlinguistic vocalizations using ALISP sequencing. In
fact, this is the first time that segmental approaches are de-
ployed for detection of nonlinguistic vocalizations. We evalu-
ated the proposed methodology against global acoustic mod-
els such as GMMs, left-to-right HMMs and ergodic HMMs
on a laughter-annotated audio corpus. We also used a stan-
dard set of features (i.e. MFCCs and deltas of MFCCs) that
are typical in traditional systems. The results show that the
proposed methodology yields an increase of 19.6%, 8.1% and
5.6% on F -measure against the three methods compared re-
spectively.

With this work, we argue that the adaptation of the set of
ALISP HMMs is useful in detecting local regions of nonlin-
guistic vocalizations. The segmental approach has further fa-
cilitated us to improve the performance using symbolic-level
smoothing such as majority voting scheme with a sliding win-
dow approach.
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