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ABSTRACT 

To enhance current diagnostic methods used when assessing a 
depressed individual, an objective screening mechanism, ideally 
based on non-intrusive behavioral signals, is needed. Given the 
clinical description of depression speech as ‘dull, monotonous and 
flat’ and promising previous results from spectral features, we 
hypothesize that the effects of depression on speech are embedded 
in spectro-temporal events. To test this hypothesis we explore 
different methodologies, based on the modulation spectrum, for 
extracting long-term spectro-temporal information from speech 
and assess their suitability as a clinical marker of depression. 
Results indicate that: depressive speech information is captured in 
the modulation spectrum, long-term spectro-temporal information 
is important in depressed speech identification and there are 
potential differences in the effects that depression and 
psychomotor retardation have on speech production mechanisms. 

Index Terms – Depression, Psychomotor Retardation, 
Spectro-Temporal, Modulation Spectrum, Energy variability 

1. INTRODUCTION 

Depression is an affective disorder that has a wide ranging clinical 
profile, symptoms include; cognitive impairments, feelings of 
worthlessness, diminished interest and a sustained depressed mood 
lasting for weeks [1]. Another key symptom of depression is 
psychomotor retardation (PMR) which is the slowing of thought 
and reduction of physical movements. Speech as a complex 
cognitive and muscular action is considered a key objective 
measure of both depression and PMR [2]. Clinically depressed and 
PMR-affected speech has been described as sounding dull, 
monotonous and flat  [2]. 

Clinicians often use rating scales such as the Hamilton Rating 
Scale for Depression (HAMD) [3], to diagnose depression. These 
tests require clinical training, practice, and certification to produce 
acceptable results [4], however they are subjective and often 
require face-to-face interaction with a psychiatrist. To enhance 
current diagnostic methods an objective screening mechanism, 
based on physiological and behavioral signals such as speech and 
PMR, is needed. 

Several papers have found significant correlations between a 
person’s clinical level of depression and prosodic speech features. 
Whilst inconsistent results have been reported for pitch based 
measures [4-7], more consistent results have been reported for 
speech timing measures [4, 5, 8]. Results in these papers indicate 
an increase in both speech timing and pause duration measures 
with depression severity. Significant correlations have also been 
reported between clinical PMR scores and articulation rate, 
phoneme rate and total vocalization time [9]. 

Spectral and energy based features have been shown to have 
strong discriminatory properties when automatically classifying 

depressed speech [10-12]. The default standard in speech 
recognition systems, when using spectral based measures, is to 
incorporate temporal based information through the use of either 
short-term 1st and 2nd order time derivatives (Δ, ΔΔ) or the 
medium-term Shifted Delta Coefficients (SDC). Several papers 
show that the addition of these features offers little improvement 
when classifying depressed speech [10, 13, 14]. Time derivatives 
and SDC are designed to capture rapid temporal information, but 
depression is a more long term condition whose effects potentially 
vary across longer time scales than those used when extracting 
these delta features. SDC’s are defined by four  parameters; N-d-P-
k, where N denotes the number of coefficients and d the number of 
frames the SDC’s are calculated over, whilst P denotes the frame 
shift between blocks and k the number of coefficients used to form 
final SDC representation. Using the default SDC setting of 7-1-3-7 
with a frame shift of 10ms, 190ms of temporal information is 
incorporated into the overall SDC feature vector, but the individual 
contributing delta coefficients are computed over just 30ms. Using 
such a short time window makes it impossible to differentiate 
between slow and fast rates of spectral change [15]. 

One method proposed to capture long-term information in a 
speech signal is the Modulation Spectrogram. The modulation 
spectrogram comprises the frequency components of sub-band 
frequencies of a spectrogram representation of speech, and is 
extracted using temporal frames up to 300ms in length. The 
modulation spectrogram offers an approach for characterizing both 
slow and fast rates of spectral change, capturing information 
relating to speech intelligibility by quantifying the power of 
temporal events relating to articulatory movements in the speech 
signal [16]. 

Motivated by recent results published in [7], where significant 
correlations (p<0.05) between an increase in variability associated 
with energy dynamics and increasing levels of either depression or 
PMR were reported, this paper explores the benefits of 
incorporating longer term spectro-temporal information in the 
identification of both PMR and depressive speech. This is achieved 
by testing SDC’s and two different methodologies based on the 
modulation spectrum for extracting long-term spectro-temporal 
information from speech. 

2. DEPRESSION DATABASE 

The database used in this paper contains voice samples from 35 
patients undergoing depression treatment over a 6 week period, 
originally collected for a depression severity study by Mundt et al. 
[4]. At weeks 0, 2, 4, and 6 of the study, the participants undertook 
clinical sessions in which their depression severity was measured 
using the HAMD assessment. The HAMD assessment rates the 
severity of symptoms observed in depression, to give a patient a 
score which relates to their level of depression (HAMDtotal). The 
scores are arranged into 5 categories; ‘Normal’ (0-7), ‘Mild’ (8-
13), ‘Moderate’ (14-18), ‘Severe’ (19-22) and ‘Very Severe’ (≥23). 
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