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ABSTRACT 
 
In this work, we propose a method for the classification of speech 
under stress that is based on a physical model. Using this method, 
the characteristics of the vocal folds and the vocal tract are taken 
into consideration, based on the process of speech production. In 
addition to vocal fold parameters, we estimate parameters of the 
vocal tract representing cross-sectional areas and vocal tract length, 
by fitting a two-mass model to real speech. Results show that 
calculation of vocal tract length for each speaker can improve the 
accuracy of the estimation of other physical parameters. Analysis 
is performed under vowel-dependent and vowel-independent 
conditions, showing that the proposed physical features are 
effective for the classification of neutral and stressed speech. 
 

Index Terms—  speech under stress, two-mass model, 
physical parameters, vocal tract length. 
 

1. INTRODUCTION 
 
Stress is a psycho-physiological state characterized by subjective 
strain, increased physiological activity, and deterioration of 
performance [1]. Factors inducing stress on speakers are believed 
to affect voice quality, and these changes are detrimental to the 
performance of communication equipment especially automated 
systems with speech interfaces. Therefore, it has become 
increasingly important to study speech under stress in order to 
improve the performance of speech recognition systems. 

Researchers have attempted to probe reliable indicators of 
stress by analyzing acoustic variables. Some external factors 
(workload, background noise, etc.) and internal factors (emotional 
state, fatigue, etc.) may induce stress [2]. It has been found that 
fundamental frequency (F0) has different characteristics for each 
emotion [3], and that respiration patterns and muscle tension also 
change [4]. High workload stress has been proven to have a 
significant impact on the performance of speech recognition 
systems, with speech under workload sounding faster, softer, or 
louder than neutral speech [5]. Matsuo, et al. examined the 
frequency domain and showed how differences in the spectrum of 
the high frequency band under stressful workload conditions could 
be used to catch people committing remittance fraud, and their 
proposed measure achieved better stressed speech classification 
performance [6]. Furthermore, the Teager energy operator (TEO) 
[7] was proposed to explore variations in the energy of airflow 
characteristics within the glottis for the purpose of stress 
classification [8]. However, the features examined in these 
previous works lack a physical basis, and the methods do not 
consider the whole process of speech production and the airflow 

pattern in the glottis, which is believed to be essential for effective 
stress classification.  

We therefore propose a speech classification method for 
identifying speech under stress using parameters estimated from a 
physical model, based on the working mechanisms of the vocal 
folds and the vocal tract. The method characterize speech 
production process and model the airflow pattern in the vocal folds 
and the vocal tract with the physical model. It is believed that the 
presence of stress can result in variations in the physical 
characteristics of physiological systems and influence acoustic 
interaction between the vocal folds and the vocal tract [9]. The 
parameters of a physical model can also represent the influence of 
speaking styles more directly. Therefore a physical model is 
helpful to estimate the parameters of the physiological system. 

In our previous work [10] [11], we estimated only vocal fold 
parameters, based on a two-mass model, for the classification of 
stressed speech. The experimental results showed the proposed 
features for the vocal folds achieved better performance than 
features derived from traditional methods.  However, an 
assumption was made that the shape of the vocal tract does not 
change. This is something of an oversimplification. Therefore, in 
this paper, we concentrate on estimation of vocal tract parameters 
representing cross-sectional areas and vocal tract length.  A fitting 
method for the two-mass model is proposed to estimate the 
physical parameters. Furthermore, some dynamic parameters, 
representing variation in the stiffness of the vocal folds, are also 
proposed to improve stress classification. In Section 2, the fitting 
method used to estimate the physical parameters is explained. In 
Section 3, our experimental results are analyzed to evaluate the 
obtained parameters and to show their corresponding classification 
performance for identifying neutral and stressed speech. Finally, 
we draw our conclusions in Section 4. 

 
2. ESTIMATION OF PHYSICAL PARAMETERS 

 
2.1. Physical model 
 
The two-mass vocal fold model was proposed by Ishizaka and 
Flanagan to simulate the process of speech production [12].  

In the two-mass model, each vocal fold is represented by two 
mass-spring-damper systems, joined with a coupling stiffness. This 
can be represented by the following equations: 
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where mi are the masses, xi are their horizontal displacements 
measured from the rest (neutral) position x0>0, and kc is the 
coupling stiffness. Fi  are the forces acting on the masses. 

VTL for 
speaker i 

In this equation,  are the equivalent tensions given by is

       i=1,2,                                               (3) )()( 3
iiiii xxkxs 

where  are stiffness coefficients and 
ik  is a coefficient of the 

nonlinear relations.  
The viscous loss of the vocal folds can be represented as:  

 
                                                                                                       (4) 
where 

i  is a damping ratio. 

The two-mass model is connected to a four-tube model 
representing the vocal tract. The tube model is constructed using a 
transmission line analogy involving n  cylindrical, hard-walled 
sections. The elemental values of the model are determined by 
cross-sectional areas , and cylinder lengths . The 

tube model can be represented by an equivalent circuit. The 
inductances are 

nAA 1 nll 1

nnn AlL 2 , the capacitances are 

2cAlC nnn  , and the resistances   2AS 2 nnnR , 

where c is the velocity of sound. Here, the tube model has been 
limited to four cylindrical sections of equal length, 4n . The 
model is terminated in a radiation load equal to that of a circular 
piston in an infinite baffle.   nAn  38L , 

nAR
, where 

nA  is the area of the mouth. 

Therefore, the differential equations related to the volume 
velocities of the system are: 
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2.2. Fitting method 
 
2.2.1. Estimation of vocal tract length 
One physical source of the inter-speaker variability is the 
differences in vocal tract length (VTL).  Physical differences in 
VTL are more marked between male and female speakers. VTL 
can vary from approximately 13 cm for adult females to over 18 
cm for adult males [13, 14], and differences in VTL influence 
spectral formant frequency. Due to the variation caused by 
differences in VTL, it is necessary to estimate a speaker’s vocal 
tract length in speaker dependent systems. 

Estimation of vocal tract length is the first step to be 
performed. Since VTL is unique for each speaker, all of the neutral 
speech data in the database from a given speaker is used to 
estimate the vocal tract length of that speaker. For VTL estimation, 
real speech coming from a database is analyzed using linear 
predictive coding (LPC) to reach the spectral envelope. The 

 
Figure 1 Strategy for VTL estimation 

 

 
Figure 2 Fitting process for VTL estimation 

 
stiffness parameters are fixed at typical values and are taken as an 
input. The two-mass model is then fit to the neutral speech of each 
speaker to estimate the parameters of vocal tract length and cross-
sectional areas. For each speaker i , the distribution of occurrence 
rate   k,iLP VTi

 of VTL for all neutral speech is 

calculated, and we choose the one with the highest occurrence rate 
as the estimated vocal tract length.  

 k,iL 

                            

VT

                                                                       (6) 
 

The algorithm used for VTL estimation is shown in Figure 1. 
The detailed fitting procedure is shown in Figure 2. The cost 
function for fitting can be represented as  
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where )(P  and  are the LPC spectral envelopes for 

simulated and real speech respectively. 
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2.2.2. Estimation of stiffness and cross-sectional areas 
The goal of stress classification is to determine from speech data if 
a specific person is under stress when he or she is speaking. So 
VTL for each speaker is first calculated using the algorithm 
described in the section 2.2.1. When speech is input to the system, 
it is split into several frames, and further estimation of the physical 
parameters is performed for each frame. The main structure is 
shown in Figure 3. 

Fitting the model to real speech poses a difficulty: the 
existence of interaction makes it impossible to fit VF and VT 
separately. It is believed that stiffness parameters k1, kc and cross-
sectional area A1, affecting both the glottal source and formants, 
are related to the acoustic interaction between the glottal source 
and the vocal tract. LVT, A2, A3, and A4, however, do not influence 
the glottal source, thus having no impact on the interaction [15].  
Therefore, parameters k1, kc, and A1 should be estimated together 
and selected as feature parameters for classification.  
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The muscle tension of the vocal folds is influenced when a speaker 
produces speech under a stressed condition [8]. The dynamic 
changes in muscle tension which occur during stressed speech, 
representing the behavior of the vocal folds, are normally different 
from the neutral condition. Therefore, variation in the stiffness 
parameters can be indicators that represent stress. Here, we 
propose the parameters of first order differentiation of stiffness as 
features to represent the dynamic changes in muscle tension: 

VTL estimation for speaker i 

Neutral speech 
from speaker i

Estimated VTL  

Segmentation Estimation of physical 
parameters (fixed frame) 

k1,kc,A1,A2 A3,A4 

Real speech 

 
Figure 3 Main structure of the method 

 

 
Figure 4 Detail of estimation of physical parameters 

The detailed fitting method for estimation of physical 
parameters is shown in Figure 4. This method includes two steps. 
First, vocal tract fitting is performed with a typical vocal fold 
setting. The output of this part of the model is the estimated cross-
sectional areas of the four-tube model: A1, A2, A3, and A4. Cost 
function 1 (C1) is defined as the root mean square (RMS) distance 
between the spectral envelope of the simulated and the original 
speech, which is shown in equation (7). 

In the second step, A2, A3, and A4 are fixed at obtained values, 
and A1 is considered as the initial value for the next fitting. In the 
second fitting, k1, kc, and A1 are selected as control parameters, and 
cost function 2 is defined as: 
 
                                                                                             (8) 
where )(S  and are the power spectrums of the signals 

for simulated and real speech after Fourier transform. Optimal 
values of the physical parameters are estimated using a Nelder-
Mead simplex method [16], which is implemented to search for the 
optimal stiffness parameters resulting in minimizing the cost 
function. 
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2.2.3. Dynamic features of stiffness parameters 
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3. EXPERIMENTS  
 
3.1. Database and experimental setup 
 
In our experiments, we used a database collected by the Fujitsu 
Corporation containing speech samples from eleven subjects, four 
male, and seven female. To simulate mental pressure resulting in 
psychological stress, three different tasks were introduced, which 
were performed by the speakers while having telephone 
conversations with an operator, in order to simulate a situation 
involving pressure during a telephone call. The three tasks 
involved (A) Concentration; (B) Time pressure; and (C) Risk 
taking. For each speaker, there are four dialogues with different 
tasks. In two dialogues, the speaker is asked to finish the tasks 
within a limited amount of time, and in the other dialogues there is 
a relaxed chat without any task. 

The segments with the Japanese vowels /a/, /i/, /u/, /e/, /o/ 
were cut from the speech and selected as samples. The experiments 
were conducted for each speaker, and all of the results were 
speaker dependent. Here, we randomly chose seven speakers (three 
male, four female) from eleven subjects to show the classification 
performance of each speaker respectively in this speaker-
dependent system. The number of samples depends on speakers, 
and the total amount is about 450-700 for each person. In order to 
increase the significance level of experimental results, a K-fold 
cross-validation method was used in experiments of classification, 
with 60% of samples for training, and the rest for testing. K was 
set to 4. Linear classifiers based on minimum Euclidean distance, 
which fit a multivariate normal density to each group, with a 
pooled estimate of covariance, were used to determine 
classification performance.  

 The samples were analyzed with 12th-order LPC and the 
frame size chosen to perform the experiment was 64ms, with 16ms 
for frame shift. For the calculation of dynamic parameters, the 
window size chosen was 5 for the first order differentiation of 
stiffness, with T set to 2 in equation (9). 

In classification, all speech samples in database were labeled 
as neutral or stressed speech. Two mass model were fit to real 
speech to estimate physical parameters. A linear classifier was 
trained using the estimated parameters. For evaluation, the 
physical parameters from a test sample were extracted and 
classified into stressed or neutral by the trained linear classifier.   
3.2. Results and analysis 
 
In the first evaluation, we estimated the vocal tract length of all of 
the speakers, and a comparison was made. In this experiment, all 
of the vowels /a/, /i/, /u/, /e/, /o/ were mixed to form the database.  

Cost function2

Two-mass 
model 

Cross-sectional area 
A1, A2, A3, A4 

speech 

FFT 

FFT 
Real speech Log | S(w) | 

 Log |S (w) | 

Change k1, kc, A1 

Two-mass 
model 

speech 

LPC 

LPC 
Real speech Log | P(w) | 

 Log |P(w) | Typical VF 

Change areas Cost function1

k1, kc, A1 

2*

1
2 ))( ii SC   (loglog

1 N

S
N i

7534



 
Figure 5 Comparison of performance before and after VTL 

estimation 
The physical parameters were estimated using the proposed fitting 
method and the estimated parameters were used as features to 
perform the classification of speech into neutral or stressed speech. 
The evaluation results for VTL estimation and dynamic parameters 
are shown in Figure 5. Physical parameters were estimated and Δk1, 
Δkc were calculated. Two features [k1, kc] and [k1, kc, Δk1, Δkc] 
were compared for their classification performance, both before 
and after VTL estimation. Our results show that [k1, kc, Δk1, Δkc] 
achieve better performance compared to [k1, kc] because the 
proposed first-order differential of physical parameters better 
represents the dynamic changes in physical parameters for intra-
voiced speech. Furthermore, we can see that performance is 
improved by the estimation of VTL. Since a speaker’s vocal tract 
length is calculated from the neutral speech of that specific speaker, 
the further estimation of physical parameters will be more accurate, 
and improvement in classification can be achieved. 

In the second experiment, we evaluated the proposed physical 
parameters. First, samples of the individual vowels /a/, /i/, /u/, /e/, 
/o/ were selected respectively for vowel-dependent experiments, 
and the average classification rate was then calculated. The 
parameters [k1, kc, A1] were estimated from real speech with the 
obtained VTL for each speaker. Figure 6 compares the 
classification rates of parameter sets [k1, kc], [k1, kc, A1], [k1, kc, Δk1, 
Δkc] and [k1, kc, Δk1, Δkc, A1]. Comparing the results, we see that 
[k1, kc, A1] and [k1, kc, Δk1, Δkc, A1] achieve better performance 
under the vowel dependent condition, in which individual vowels 
are considered separately. A1 is effective for classification because 
the shape of the vocal tract doesn’t change significantly when 
considering only one vowel, so A1 only represents acoustic 
interaction, thus improving classification performance. 

Next, all of the vowels /a/, /i/, /u/, /e/, /o/ were mixed for the 
vowel-independent condition. Figure 7 shows the results for [k1, 
kc], [k1, kc, A1], [k1, kc, Δk1, Δkc] and [k1, kc, Δk1, Δkc, A1]. The 
results show that the classification rate of [k1, kc, A1] and [k1, kc, 
Δk1, Δkc, A1] under the vowel-independent condition is reduced. 
This is because the cross-sectional area A1, not only affect the 
interaction between VF and VT, but also determines vocal tract 
shape, and thus relies on vowel information. Furthermore, it is 
shown that the parameter set for the vocal folds [k1, kc] is able to 
reach the same classification rate as the results obtained under the 
vowel dependent condition, and can maintain their performance 
under the vowel-independent condition.  Therefore, it is proven 
that A1 is effective under the vowel-dependent condition, while  

 
Figure 6 Evaluation under vowel-dependent condition. The 

parameters are calculated from the real speech after the estimation 
of vocal tract length for individual vowel. 

 
Figure 7 Evaluation under vowel-independent condition. The 

parameters are estimated from the real speech after the estimation 
of vocal tract length for all the mixed vowels. 

under the vowel-independent condition, [k1, kc] is more useful for 
stress classification. 

 
4. CONCLUSION 

 
In this paper, we proposed a method for stress classification based 
on a physical model which takes into consideration the 
characteristics of the vocal folds and the vocal tract. In addition to 
vocal fold parameters, the physical parameters for the vocal tract, 
representing cross-sectional areas and vocal tract length, were 
estimated by fitting the two-mass model to real data. Experiments 
were performed to show that the calculation of vocal tract length 
for each speaker improves the estimation accuracy of other 
physical parameters. Physical parameters were analyzed to show 
that A1, cross-sectional area of the vocal tract in the supraglottis, is 
effective for the classification of neutral and stressed speech under 
the vowel-dependent condition, while stiffness of the vocal folds 
achieves better classification performance in the vowel 
independent condition.. 
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