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ABSTRACT 
 
MFCC (Mel Frequency Cepstral Coefficients) and PLP 
(Perceptual linear prediction coefficients) or RASTA-PLP 
have demonstrated good results whether when they are used 
in combination with prosodic features as suprasegmental 
(long-term) information or when used stand-alone as 
segmental (short-time) information. MFCC and PLP feature 
parameterization aims to represent the speech parameters in 
a way similar to how sound is perceived by humans. 
However, MFCC and PLP are usually computed from a 
Hamming-windowed periodogram spectrum estimate that is 
characterized by large variance. In this paper we study the 
effect of averaging spectral estimates obtained using a set of 
orthogonal tapers (windows) on emotion recognition 
performance. The multitaper MFCC and PLP are examined 
separately as short-time information vectors modeled using 
Gaussian mixture models (GMMs). When tested on the 
FAU AIBO spontaneous emotion corpus, a relative 
improvement ranging from 2.2% to 3.9% for both MFCC 
and PLP systems is achieved by multiple windowed spectral 
features compared to single windowed ones. 
 

Index Terms— Emotion recognition, multitaper 
spectrum, MFCC, PLP, speech, GMM 
 

1. INTRODUCTION 
 
Research on the extraction of most discriminate feature sets 
for emotion recognition from speech has been an area of 
great focus in several studies in last years. Thousands of 
paralinguistic features are extracted and used in experiments 
as a whole set or reduced to a subset using feature selection 
techniques. These features can be classified to one of three 
categories: Prosodic such as energy, loudness and duration, 
Voice Quality such as jitter and shimmer, and Spectral such 
as LPCC (linear prediction cepstral coefficients). The 
spectral features have been found, when used in 
combination to other categories of features (or even as a 
stand-alone feature vector), to improve (or to achieve good) 
performance [1-4]. Mel Frequency Cepstral Coefficients 
(MFCCs) [5] and Perceptual Linear Prediction (PLP, with 

or without RASTA filtering) [6] are examples of spectral 
features that achieve good results not only on speech 
processing in general but also on emotion recognition. 

The MFCC and PLP parameterization techniques aim to 
simulate the way how a sound is perceived by a human. 
Usually, the spectrum is estimated using a windowed 
periodogram via the discrete Fourier transformation (DFT) 
algorithm. Despite having low bias, a consequence of the 
windowing is increased estimator variance. An elegant 
technique for reducing the spectral variance is to replace a 
windowed periodogram estimate with a multiple windowed 
(or multitaper) spectrum estimate [7, 8]. 

In the multitaper spectral estimation method, a set of 
orthogonal tapers is applied to the short-time speech signal 
and the resulting spectral estimates are averaged, which 
reduces the spectral variance. The multitaper method has 
been widely used in geophysical applications and more 
recently, in speech enhancement applications [9] and in 
speaker and speech recognition [10-12] and it has been 
shown to outperform the windowed periodogram. 
Our main goal in this paper is to study whether the 
improvements achieved on speech and speaker verification 
tasks using multitapering, described in section 2, translate to 
the emotion recognition problem. Multitaper spectrum 
estimates are applied to the extraction of both MFCC and 
PLP features (section 3). Multitaper MFCC and PLP are 
used in experiments on the FAU AIBO corpus, a well-
known spontaneous emotion speech corpus (section 4). The 
extracted features are used as short-term information and 
modeled using GMM models, which are presented in 
section 5. The results are presented in section 6 before 
drawing a conclusion. 
 

2. MULTITAPER SPECTRUM ESTIMATION 
 
In speech processing applications, the power spectrum is 
often estimated using a windowed direct spectrum 
estimator. For the mth frame and kth frequency bin an 
estimate of the windowed periodogram (called also single-
taper) can be formulated as: 
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where  denotes the frequency bin index, N 

is the frame length, s(m,j) is the time domain speech signal 
and w(j) denotes the time domain window function, also 
known as taper. The taper, such as Hamming window, is 
usually symmetric and decreases towards the frame 
boundaries. 

 1,,1,0  Kk  

Windowing reduces the bias, i.e., expected value of the 
difference between the estimated spectrum and the actual 
spectrum, but it does not reduce the variance of the spectral 
estimate [13]. To reduce the variance of the MFCC or PLP 
estimator, the multitaper spectrum estimate is used instead 
of the windowed periodogram estimate [7, 8, 14]. 
The multitaper spectrum estimator, which uses M 
orthogonal window functions rather than a single window, 
can be expressed as 
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where N is the frame length and wp is the pth data taper (p = 

1, 2,...,.M) used for spectral estimate . Finally, λ(p) is 

the weight of the pth taper. The tapers wp(j) are typically 
chosen to be orthonormal. The multitaper spectrum estimate 
is therefore obtained as the weighted average of M 
individual sub-spectra.  

 MTŜ

The idea behind multitapering is to reduce the variance of 
the spectral estimates by averaging M direct spectral 
estimates, each with a different data taper. If all M tapers are 
pairwise orthogonal and properly designed to prevent 
leakage, the resulting multitaper estimates outperform the 
windowed periodogram in terms of reduced variance, 
specifically, when the spectrum of interest has high dynamic 
range or rapid variations [15]. Therefore, the variance of the 
MFCC and PLP features computed via this multitaper 
spectral estimate will be low as well.  
 
Various tapers have been proposed in the literature for 
spectrum estimation. A set of M orthonormal data tapers 
with good leakage properties is given by the Slepian 
sequences (also called discrete prolate spheroidal sequences 
(dpss)), which are a function of a prescribed mainlobe width 
[7, 9]. The Slepian tapers, which underlie the Thomson 
multitaper method [7], are illustrated in Fig. 1 for M = 6 
both in time and frequency domains.  
The sine tapers are another family of tapers, which are very 
easy to compute and are pairwise orthogonal, and can be 
formulated as [8]: 
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Figure 1. Thomson multitapers for N = 256, M = 6 in (a) time and 
(b) frequency domains. 
 
The multiplicative constant makes the tapers orthonormal. 
The sine tapers are applied with optimal weighting for 
cepstrum analysis (called Sinusoidal Weighted Cepstrum 
Estimator (SWCE)) in [14] and in [16] the multi-peak tapers 
are designed for peaked spectra. More details about these 
three tapers can also be found in [10]. In this paper, we use 
the Thomson multitaper [7], the SWCE [14], and the Multi-
peak multitaper spectrum estimator [16] to compute the low 
variance MFCC and PLP features for an emotion 
recognition system. 
 

3. MULTITAPER MFCC AND PLP EXTRACTION 
 

The feature extraction process of multitaper MFCC and PLP 
is presented through the block diagram of Figure 2. After 
pre-processing (DC offset removal and signal spectral pre-
emphasis), the speech signal is decomposed into a series of 
20-30 ms overlapping frames with a frame shift of 10 ms. 
Each frame is then multiplied by a single window (when 
M=1) such as a Hamming window or multiple windows, 
such as a Thomson multitaper, to reduce the effect of 
discontinuity introduced by the framing process. The power 
spectrum is estimated by computing the squared magnitude 
of the discrete Fourier transform (DFT) of the frame. The 
spectrum of the speech signal is then filtered by a group of 
triangle bandpass filters that simulate the characteristics of a 
human's ear called Mel windows.  

After these similar processing steps for both features 
(MFCC and PLP), the MFCC extraction process follows 
with the natural logarithmic nonlinearity, which aims to 
approximate the relationship between a human's perception 
of loudness and the sound intensity. Finally, the DCT 
(discrete cosine transform) is applied to generate the 
cepstral coefficients.  


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For the PLP features, the nonlinearity is based on the 
power-law proposed by Hermansky [6]. An inverse discrete 
Fourier transform (IDFT) is then applied to obtain a 
perceptual autocorrelation sequence following the linear 
prediction (LP) analysis. Final features are generated from 
LP coefficients using cepstral recursion [17]. Note that, for 
the extraction of PLP features, we have followed HTK-
based processing [18], that is, for the auditory spectral 
analysis a Mel filterbank is used instead of a trapezoid-
shaped bark filterbank. 

Once static MFCC and PLP features are extracted, the 
log energy of the frame, the delta and double delta features 
are computed and added to the feature vector characterizing 
the frame of speech. 
 

4. EMOTION CORPUS Figure 2 Block diagram illustrating MFCC and PLP feature 
extraction based on single and multitaper spectrum estimation.  

The effectiveness of the low variance multitaper 
spectrum estimation on an emotion recognition task is tested 
using the FAU AIBO [3] emotional speech corpus. The 
dataset consists of spontaneous recordings of German 
children interacting with a pet robot. The corpus is 
composed of 9959 chunks for training and 8257 chunks for 
testing. A chunk is an intermediate unit of analysis between 
the word and the turn, which is manually defined based on 
syntactic-prosodic criteria. The chunks are labeled into five 
emotion categories: Anger (A), Emphatic (E), Neutral (N), 
Positive (P, composed of motherese and joyful) and Rest (R, 
consisting of emotions not belonging to the other categories 
such as bored, helpless, and so on). The distribution of the 
five classes is highly unbalanced. For example, the 
percentage of training data of each class is as follows: 
A(8.8%), E(21%), N(56.1%), P(6.8%), R(7.2%). 
 

5. GMM MODELS 
 
Cepstral feature vectors are modeled using a GMM model. 
GMM is a generative model widely used in the field of 
speech processing. It is a semi-parametric probabilistic 
method that offers the advantage of adequately representing 
speech signal variability. Given a GMM modeling a D-
dimensional vector, the probability of observing a feature 

vector given the model  is computed as follows: 
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where m, ,  and correspond to the number of 

Gaussians, weight, mean vector and diagonal covariance 

matrix of the Gaussian, respectively. 
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GMM parameters are estimated using a Maximum 
Likelihood (ML) approach based on the Expectation 
Maximization (EM) algorithm [19].  
The classification of a test sequence of frames 

 is based on the Bayes decision. Using an 

equal prior probability for all classes, the classification is 
achieved by computing the log-likelihood of the test 
utterance against the GMM of each emotion class. The test 
recording is classified as the emotion class label that 
maximizes the log-likelihood value over all class models. 

 TxxxX ,,, 21 

 
6. EXPERIMENTS 

 
In this section we describe and report the results of the 
systems designed in order (i) to evaluate the efficiency of 
multitaper spectrum estimation vs. single-taper, and (ii) to 
compare between the different methods of multitaper 
spectrum estimation described in Table 1.  
 

Table 1 Single-taper and multitaper MFCC and PLP feature-based 
emotion recognition systems. 

System Description 

Baseline 
MFCC and PLP features are computed from the 
Hamming windowed direct spectrum estimate. 

SWCE 
MFCC and PLP features are computed from the 
sinusoidal weighted (i.e., sine tapered) spectrum 
estimate [14]. 

Multi-peak 
MFCC and PLP features are computed from the 
multitaper spectrum estimate using multi-peak 
tapering [16]. 

Thomson_1 

MFCC and PLP features are calculated from the 
multitaper spectrum estimates with dpss tapering 
[7]. Eigenvalues are used as the weights instead of 
uniform weights. 

Thomson_2 
MFCC and PLP features are calculated using 
Thomson multitaper method. Adaptive non-
uniform weights are used instead of uniform one. 

 
6.1. Experimental setup 
 
The training of GMM models has been made with different 
numbers of mixtures taken from the set 
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 1024,512,256,128,64,32,16,8,4,2 . The best parameter is 

tuned based on the training data using a 9-fold cross 
validation protocol. Each fold contains a separate group of 
speakers to ensure speaker independent evaluation. After 
optimization, the selected numbers of Gaussians used for 
test data are as follows. For MFCC based-features we use 
256 for the baseline, 128 for SWCE, Multi-peak and 
Thomson_1 and 32 for Thomson_2 systems. For PLP-based 
features, we used mixtures of 128 for baseline, SWCE and 
Multi-peak and mixture of 64 Gaussians for the Thomson_1 
and Thomson_2 systems. The results are optimized to 
maximize the unweighted average recall (UAR) measure 
and secondly the weighted average recall (WAR) (namely 
accuracy) given that FAU AIBO emotion classes are highly 
unbalanced (i.e., one class is disproportionately more 
represented than the others). Note that a baseline classifier 
that predicts all the test data of the same class as of the 
majority one, namely Neutral, will achieve 65% of accuracy 
but only 20% of UAR. 
 
6.2 Multitaper features 
 
For our experiments, 13 static MFCC or PLP features 
(including the log energy) are extracted with a frame shift of 
10 ms. Deltas and double deltas of static features are 
computed using a 5-frame window and added to static 
coefficients to compose 39-dimensional MFCC or PLP 
feature vectors. For this study, we take the number of tapers, 
M, equal to 6 because it is found that this number optimizes 
the performance for speech recognition [12] and speaker 
verification problems, as reported in [10, 11].  
 
6.3 Uniform versus non-uniform multitaper weighting 
 
In its simplest formulation, a multitaper estimator is the 
average of M direct spectral estimators and takes the form: 
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It has been shown in [10], in the context of speaker 
recognition, that the use of non-uniform weights instead of 
uniform weights (equal to 1/M) to obtain the final multitaper 
spectral estimate provides better recognition accuracy over 
the baseline.  
In the multitaper systems described in Table 1 (namely 
SWCE, multi-peak, Thomson_1 and Thomson_2), the final 
spectrum of the multitaper is estimated by averaging the M 
tapered subspectra using non-uniform weights. The reason 
is: The central peak at the harmonic frequency is produced 
by the exclusive contribution of the first taper. The 
subsequent tapers compensate for the information lost at the 
extremes of the first taper by producing spectral peaks 
distributed left and right of the central peak. An equal 
contribution (uniform weights) of each taper in estimation 
of the final spectrum yields to a high loss of energy for 

higher-order tapers. In order to compensate for this 
increased energy loss, adaptive non-uniform weights are 
applied as proposed by Thomson in [7]. Multitaper using 
adaptive non-uniform weights represents the fourth system 
in experiments in this study and dubbed Thomson_2 as 
described in Table 1. 
 
6.4. Evaluation 
 
Table 2 gives the results achieved for each multitaper 
system. First, we observe that multitapers perform better 
than the single taper (Hamming) for both, MFCC and PLP 
feature-based, systems. The relative gain with respect to the 
baseline is ranging from 2.6% to 3.9% for MFCC and 
substantially the same range for the PLP based-system 
(from 2.2% to 3.9%). We also note that the adaptive non-
uniform multitaper weighting (Thomson_2) slightly 
outperforms the non-uniform weighting using eigenvalues 
(Thomson_1). When comparing all multitaper methods 
together over the baseline, we observe that the SWCE and 
multi-peak are preferable. Finally, if we compare between 
MFCC and PLP we observe that PLP preserve its 
superiority in performance over MFCC with single taper as 
well as after averaging spectrum estimates. 
 

7. CONCLUSION 
 
In this paper, we have applied multitaper spectral estimates 
on MFCC and PLP features for an emotion recognition 
problem. Averaging spectral estimates helps to reduce large 
variance introduced by single-tapered spectrum estimate. 
We have shown that multitapering achieves over the 
baseline system a relative improvement ranging from 2.2% 
to 3.9% for both MFCC and PLP systems. These results 
confirm the effectiveness of multitapering in an emotion 
recognition task as reported in previous studies when 
applied on speech and speaker recognition. The number of 
tapers M used in this study was based on the optimization 
made for speech recognition and speaker verification tasks. 
In future work, we will study if the same value of M also 
optimizes the emotion recognition performance or whether 
the improvement can be further enhanced for different 
values of the number of tapers.  

Table 2. Emotion recognition results achieved on FAU AIBO test 
data for the baseline and multitapers systems in terms of UAR and 
WAR scoring metrics. 

 MFCC PLP 
 UAR WAR UAR WAR 

Hamming 41.7% 45.3% 42.3% 41.5% 

SWCE 43.3% 40.62% 43.5% 41.8% 

Multi-peak 43.2% 40.3% 44.0% 40.8% 

Thomson_1 42.8% 45.3% 42.4% 38.0% 

Thomson_2 42.9% 36.7% 43.3% 39.9% 
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