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ABSTRACT

In this paper, we present a novel post-processing scheme to improve
autoregressive (AR) speech parameter estimation in noise. The pro-
posed technique exploits temporal correlation between dynamic all-
pole parameters to capture natural speech evolution. To achieve this,
a Kalman tracking scheme is proposed to track line spectrum fre-
quency (LSF) trajectories with system parameter learned directly
from processed online data. To facilitate the online system identifi-
cation, a heuristic approach is initially proposed to preliminarily re-
move “musical tones” caused by conventional frame-based methods
in LSF domain. Through performance evaluation based on a study
of spectrogram and objective measures, it is demonstrated that the
proposed post-processing scheme successfully restores natural and
smooth evolution of speech dynamics, and in the meantime, effec-
tively removes processing artifacts caused by conventional methods
in various conditions.

Index Terms— temporal correlation, autoregressive(AR) model,
line spectrum frequencies(LSF), musical tones, Kalman filter

1. INTRODUCTION

In classical speech enhancement, the reduction of background noise
is often realized by a frame-based suppression gain function that is
optimally derived from estimated clean and noise power spectrum
coefficients. However, by taking advantage of the autoregressive
(AR) modeling of speech, the gain function can be effectively ap-
proximated with AR spectrum samples, and hence the speech en-
hancement problem is transferred into an all-pole parameter estima-
tion problem. There are several distinguishable advantages of using
AR modeling in this context. First, by operating in reduced dimen-
sion, it is computational cost-efficient to perform online iterative pa-
rameter learning (e.g. iterative Wiener filtering (IWF) using maxi-
mum a posteriori (MAP) techniques [1] and Kalman filtering using
expectation-maximization (EM) algorithm [2]). Second, it is possi-
ble to impose constraints directly on all-pole parameters to limit the
pole movement, in order to avoid the unrealistic spectral changes [3].
Furthermore, it facilitates the use of pre-cleaned AR codebooks with
affordable size for data-driven methods [4].

However, there are certain trade-offs for these conventional AR-
based methods. In non-data-driven approaches, AR parameter are
directly estimated from noisy observations on a frame basis with
certain optimal filtering rules. However, due to the fast varying na-
ture of both speech and noise, it is extremely difficult to obtain low-
variance AR estimate in low signal-to-noise ratio (SNR) regions. As
a consequence, disturbing artifacts (commonly referred as “musical
tones”) are randomly created in time-frequency domain. Although
various temporal constraints can be imposed to improve the estimate

[3][5], due to gain fluctuation in frame-based processing, these ap-
proaches generate more or less “musical tones”, depending on the
operating conditions. On the other hand, in data-driven approaches
[6][4], “musical tones” are effectively alleviated as AR estimates are
replaced with pre-trained clean parameters. Nevertheless, several
additional issues such as computational complexity, training model
mismatch, and identification robustness are raised to limit their prac-
tical uses.

In this paper, we attempt to balance the above-mentioned trade-
offs and we propose an online two-stage post-processing technique
to re-estimate AR parameters by exploiting speech dynamic features.
More specifically, a self-adaptive Kalman tracking technique is pro-
posed to capture the long-term speech evolution and system parame-
ters are learned directly from processed online data. To facilitate the
online system parameter learning, a heuristic approach is initially
proposed to preliminarily remove “musical tones” caused by con-
ventional frame-based methods. The proposed method has several
distinguishable differences as compared to conventional approaches
for AR parameter estimation. First, it truly takes into account the
speech dynamic track information rather than simply performing
weighted averaging. In doing so, the spectral envelope evolution is
well captured and hence the AR estimate react fast to the change of
speech and noise signals. Second, the proposed enhancement pro-
cess is training-free, and is performed in line spectral frequencies
(LSF) domain with reduced dimension. Therefore, the computation
load is significantly reduced and the improved AR estimates can be
universally employed in related suppression gain functions. The ef-
fectiveness of the proposed method is evaluated based on based on
a study of spectrogram and objective measures including log likeli-
hood ratio (LLR) log spectral distance (LSD), and perceptual evalu-
ation of speech quality (PESQ).

The remainder of this paper is organized as follows. In Section
2, the proposed two-stage post-processing scheme to improve AR
estimate is presented. In Section 3, the performance of the proposed
method is evaluated and compared with conventional methods. Fi-
nally, discussion and conclusion are addressed in Section 4.

2. PROPOSED POST-PROCESSING SCHEME

The main idea to obtain smooth and accurate AR estimates is to
restore the original naturally evolving speech tracks, given prelim-
inarily filtered observation which might contain “musical tones”.
Previous investigation [6] suggests that decent results can be ob-
tained via Kalman filtering with system parameters learned from
a parallel training corpus. Nevertheless, to facilitate the use of
Kalman filter framework in training-free situations, a two-stage
post-processing scheme is developed in this contribution. In the
first stage, a heuristic musical-tone-removal step is designed to
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combat “musical tones” and hence to improve the subsequent on-
line Kalman parameter learning. In the second stage, an adaptive
Kalman smoother is performed with system parameters such as
the state transition matrix F (with temporal track information) and
observation-state-mapping matrix H (with corruption type informa-
tion) learned from musical-tone-removed LSFs.

2.1. Heuristic “Musical Tones” Removal

It is already verified in [3][5] that incorporating additional temporal
information is extremely beneficial to combat “musical tones”. In
order to look for long-term speech evolution, we propose to exploit
the speech dynamic feature in LSF domain. The major reason is
twofold. First, due to the fact that “musical tones” often manifest as
isolated peaks or “short ridges” [7] in time-frequency domain, it is
possible to distinguish natural formants and “musical tones” with a
series of LSF observation by inspecting the difference between adja-
cent odd-indexed and even-indexed LSFs as they are indicative of the
formant bandwidth [3]. Second, it is shown in [6] that, with robust
system identification, speech temporal trajectories can be effectively
captured by tracking LSF parameters.

2.1.1. Classification

Initially, a series of N preliminarily filtered power spectra |X̂ℓ(ω)|
2

with ℓ = 1, 2, . . . , N are converted to autocorrelation sequence ac-
cording to Wiener-Khinchin relationship

rℓ,k =
1

2π

∫ π

−π

|X̂ℓ(ω)|
2 cos(kω)dω (1)

An order P linear predictive coding (LPC) analysis is then per-
formed to compute LSFs for each time frame. The basic processing
unit in the block-based analysis is a P × N dynamic feature ma-
trix U with each column being a set of LSF coefficients θℓ,k with
k = 1, 2, . . . , P . In addition, a P/2 × N position matrix S is
defined by the odd-indexed LSFs as

sℓ,k = θℓ,2k−1, k = 1, 2, . . . , P/2 (2)

and a P/2 × N difference matrix D are defined by the difference
between adjacent odd-indexed and even-indexed LSFs as

dℓ,k = min
j=−1,1

|θℓ,2k+j − θℓ,2k|, k = 1, 2, . . . , P/2 (3)

By comparing each element in D with a pre-defined bandwidth
threshold δ, spectral peaks, either natural formants or artifacts, are
identified if dℓ,k < δ. The next step is to distinguish “musical tones”
from natural formants by evaluating the temporal track information.
In each located peak with index [ℓ∗, k∗], a (2∆t + 1)× (2∆f + 1)
stripe region (∆t > ∆f ) centered at [ℓ∗, k∗] is defined, where
∆f and ∆t are the frequency deviation tolerance and the formant
bandwidth threshold, respectively. The current peak is classified
as a component in a formant track if it extends at least one direc-
tion (backward or forward) along the time track. By defining the
backward track as Rb, the forward track as Rf , it is interpreted
mathematically as

min(

∑
i,j∈Rb

di,j

Lb

,

∑
i,j∈Rf

di,j

Lf

) < ρ (4)

where the Lb and Lf are the total number of points belong to Rb and
Rf , respectively. ρ is the average formant bandwidth threshold to

discriminate track and randomness. The current point (i, j) belongs
to a backward/forward track if it satisfies the following

(i, j) ∈ Rb, if i ∈ [ℓ∗ −∆t, ℓ
∗], j ∈ [k∗ −∆f , k

∗ +∆f ],

and|sℓ∗,k∗ − si,j | < β (5)

(i, j) ∈ Rf , if i ∈ [ℓ∗, ℓ∗ +∆t], j ∈ [k∗ −∆f , k
∗ +∆f ],

and|sℓ∗,k∗ − si,j | < β (6)

where |sℓ∗,k∗ − si,j | < β explains the constraint that the current
point (i, j) is connected to the center point (ℓ∗, k∗) only if it appears
in adjacent frequency locations (in terms of formant position param-
eters), and the pre-defined threshold β defines the term “adjacent” in
this context.

2.1.2. Processing Treatment

In order to remove an isolated peak that is identified with index
(ℓ∗, k∗), a spectral smoothing procedure is developed to average out
LSFs over a “safety” region without affecting other formants. More
specifically, an additional backward and forward search (along the
frequency track, started from k∗) is performed on the ℓ∗th column
of the difference matrix D to find the last peak (dℓ∗,klp < δ) and the
next peak (dℓ∗,knp < δ) for this particular frame. The “safety” region
is defined as [2klp +2, 2knp − 2] (note that index k in matrix D may
affect [2k− 1, 2k+1] region in θ). Consequently, the target peak is
smoothed out by averaging LSFs over the region with the increment
τ being

τ =
θℓ∗,2knp−2 − θℓ∗,2klp+2

2(knp − klp − 2)
(7)

The complete algorithm for heuristic “musical tones” removal is
summarized in Table 1. The effectiveness of the proposed approach
is illustrated in Fig.1. By contrasting the proposed post-processing
technique in Fig.1(a) with a conventional decision-directed Wiener
filter (DD WF) [5] in Fig.1(b), it is noted that the proposed approach
effectively adjusts the irregular points in LSF trajectories and also
removes the isolated peaks in the spectrograms.

Table 1: Proposed algorithm for heuristic “musical tones” removal

Initial condition: Position matrix S, Difference matrix D

// Search the difference matrix D

For each ℓ ∈ [1, N ] k ∈ [1, P/2]
// locate a peak
If dℓ,k < δ

// Search the stripe centered at the peak (ℓ, k)
For each i ∈ [ℓ−∆t, ℓ+∆t], j ∈ [k −∆f , k +∆f ]

Classify the peak using (4)(5)(6)
If it is an isolated peak

Perform the smoothing using (7)
End

End
End

End

2.2. Speech Dynamics Tracking

The heuristic approach developed in last section can effectively re-
move “musical tones”. However, it is noted that there are still several
issues to tackle. First, the formant is not substantially improved and
it is often sharper than the original since conventional methods of-
ten emphasize high SNR regions. Second, the spectral envelopes are
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(a) Processed by decision-directed Wiener filtering (musical tone retained)

(b) Processed by proposed heuristic filtering (musical tone removed)

Fig. 1: Comparison of LSF trajectories and 3D surface spectrograms

less ordered compared to the original since the temporal constraint is
only imposed in classification, the smoothing is still performed on a
frame-by-frame basis. In order to incorporate the true trajectory in-
formation, we propose to apply the dynamic tracking scheme on the
heuristically enhanced LSFs to further improve the AR parameter
estimation.

A Kalman tracking framework is initially proposed in [6] to
model the noisy and clean LSF blocks as the observation and state
sequences using a linear dynamical system (LDS). Given Kalman
system parameters Θ = {F,H,Q,R, x̂1,Σ1} (where F is the
state transition matrix, H is a state-observation mapping error, Q
and R are state and observation error covariances, x̂1 and Σ1 are
initial state mean and error covariance, respectively), clean all-pole
parameters can be readily derived by applying Kalman tracking over
an analysis block. However, the major difference between the sys-
tem identification in [6] and that in this contribution is that a training
corpus is no longer required here, and Kalman system parameters are
learned directly in the enhancement stage. Instead of using a paral-
lel corpus, it is proposed to estimate the model parameters Θ from
the heuristically enhanced feature block X̃ = {x̃1, . . . , x̃N} and
the noisy observation block Y, with diagonal constraints imposed
on F and H. The diagonal constraints are crucial in this context for
two major reasons. First, it constrains the evolution of each LSF co-
efficient to be linear along the time track (cross-correlation between
LSFs with different frequency locations are minimized). In doing so,
F and H are forced to be smooth in nature and therefore tolerate no
irregularity. Second, as only a single block is adopted in this learn-
ing, ill-condition might be posed in calculating the matrix inversion
in ML estimates due to insufficient data. The diagonal constraints
offer great flexibility in the track length requirement. To achieve
this, the ML learning of state transition matrix F with diagonal con-
straints can be effectively defined by minimizing the following ob-

jective function

J =

N∑
ℓ=2

(x̃ℓ − diag(f)x̃ℓ−1)
T (x̃ℓ − diag(f)x̃ℓ−1) (8)

with f being the vector containing diagonal elements of F. The stan-
dard least square (LS) solution gives f as

f = [

N∑
ℓ=2

diag(x̃ℓ−1)]
−1

N∑
ℓ=2

x̃ℓ (9)

Similarly, the objective function to obtain a vector h that containing
diagonal elements of H is

J =

N∑
ℓ=1

(yℓ − diag(h)x̃ℓ)
T (yℓ − diag(h)x̃ℓ) (10)

which gives

h = [

N∑
ℓ=1

diag(x̃ℓ)]
−1

N∑
ℓ=1

yℓ (11)

The state transition matrix is computed as F = diag(f) and cor-
ruption mapping matrix is computed as H = diag(h), respectively.
The rest of model parameters are computed with re-estimated F and
H using the standard ML estimator (in this case, a single training
block) described in [6]. In the final stage, for each analysis block,
the suppression gain function is recomputed using with AR spectrum
samples constructed from tracked LSFs.

3. PERFORMANCE EVALUATION

The effectiveness of the proposed two-stage post-processing scheme
is evaluated in this section. Fig.2 shows the envelope spectrograms
(comprise of consecutive energy-normalized spectral envelopes) of
a sentence “a large size in stockings is hard to sell” spoken by a
male speaker in various conditions. By comparing Fig.2(a)-(c) it
is observed that the classical WF with DD a priori SNR estimator
(similar for other conventional spectral weighting techniques) effec-
tively suppress the average noise floor while retaining considerable
speech information. However, it is also noted in Fig.2(c) that plenty
of “smeared spots” randomly reside on the processed spectrogram
and the formant bandwidth is smaller as compared to the original in
Fig.2(a). Nevertheless, as demonstrated in Fig.2(d), the above two
common deficiencies of conventional methods are significantly im-
proved by applying the proposed post-processing scheme. It is no-
ticed that the “smeared spots” are removed and the entire evolution
is natural and smooth with speech information well-retained.

The objective measures consist of a log likelihood ratio (LLR)
measure which assesses the dissimilarity between energy-normalized
all-pole spectra, a log spectral distance (LSD) measure which tak-
ing into account the additional excitation variance information, and
a standard perceptual evaluation of speech quality (PESQ) mea-
sure to evaluate the overall speech quality improvement. The pro-
posed approach is evaluated with following experimental settings.
Clean speech and noise are taken from IEEE sentence database
and NOISEX-92 database, respectively. Clean speech is manually
corrupted by additive noise at SNR level from 0dB to 10dB, with a
step size of 5dB. Two types of noise, namely, car interior noise and
babble noise are adopted. The sampling frequency is 8KHz. The
block and frame duration are 112ms and 32ms, respectively. The
frame shift is 8ms. The size of short-time Fourier transform (STFT)
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Table 2: Objective evaluation results

Objective Evaluation Results
LLR Distance LSD (in dB) PESQ (out of 4.5)

Noise Input SNR Input SNR Input SNR
Type Method 0dB 5dB 10dB 0dB 5dB 10dB 0dB 5dB 10dB
Car NOISY 1.126 0.976 0.803 17.71 15.47 12.03 1.86 2.18 2.35

Interior DD WF 0.991 0.784 0.607 12.39 10.84 9.185 2.04 2.34 2.54
Noise OT WF 0.875 0.644 0.512 9.912 8.857 8.074 2.18 2.46 2.62

CB WF 0.623 0.434 0.334 6.541 5.642 4.779 2.35 2.51 2.73
DD HNM − − − − − − 2.21 2.39 2.62
OT HNM − − − − − − 2.32 2.50 2.71
CB HNM − − − − − − 2.42 2.62 2.80

Babble NOISY 1.222 1.053 0.874 17.95 14.38 10.29 1.91 2.17 2.28
Noise DD WF 1.094 0.844 0.638 13.70 10.84 7.816 2.06 2.24 2.38

OT WF 0.884 0.751 0.598 9.446 8.612 6.426 2.18 2.34 2.46
CB WF 0.712 0.434 0.334 6.541 5.642 4.779 2.32 2.48 2.65
DD HNM − − − − − − 2.28 2.39 2.62
OT HNM − − − − − − 2.39 2.47 2.70
CB HNM − − − − − − 2.51 2.67 2.88

(a) clean speech

(b) noisy (corrupted by white noise at SNR = 5dB)

(c) Wiener filtering with DD a priori SNR estimator

(d) Proposed post-processing scheme

Fig. 2: Comparison of spectrograms in various conditions

is 256 and the order of LPC analysis is 18. Other parameters are
empirically set as follows. The bandwidth threshold is δ = 0.1, the

frequency deviation threshold is β = 0.1, and average bandwidth
threshold is ρ = 0.12, all in radius. Moreover, ∆t = 4 and ∆f = 1
are defined for stripe offsets.

In this evaluation, the online tracked (denoted with prefix OT )
AR parameters are fed into both classical Wiener filter (WF) gain
function [1] and harmonic noise model (HNM) based analysis-
synthesis framework [8], to compare with its non-data-driven (AR
parameter estimated with classical DD estimator [5], denoted with
prefix DD ) and data-driven (AR parameter estimated with pre-
trained LDS codebook [6], denoted with prefix CB ) counterparts.
The results of above three measures with various noise and SNR
settings are shown in Table.2 (the LLR and LSD measures for
HNM-based approaches is omitted as they use the identical AR
estimates adopted in WF-based approaches). It is observed that
the proposed method balances the trade-off between conventional
decision-directed method and codebook driven method in obtaining
natural and smooth AR estimates. It indicates that the proposed
method can be employed as a post-processing tool to improve
over conventional spectral weighting techniques, without imposing
additional computational burden brought by codebook design. Be-
sides, informal subjective evaluation also suggests that the proposed
method effectively alleviates perceptual annoying “musical tones”.

4. DISCUSSION AND CONCLUSION

This work is developed based on the fundamental LSF modeling
of speech evolution proposed in [6]. The major difference is that
a training corpus is no longer required by imposing diagonal con-
straints on state transition and state-observation mapping matrices.
To achieve this, a novel heuristic musical-tone-removal approach is
proposed to facilitate the online Kalman system parameter learning.
The tracked LSF estimates can be connected with classical spectral
weighting rules (e.g. [5]) or analysis-synthesis modules (e.g. [8])
for speech enhancement. Objective evaluation results demonstrate
the effectiveness of the proposed technique.

7505



5. REFERENCES

[1] J. Lim and A. Oppenheim, “All-pole modeling of degraded
speech,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 26, no. 3, pp. 197–210, June 1978.

[2] S. Gannot, D. Burshtein, and E. Weinstein, “Iterative and se-
quential kalman filter-based speech enhancement algorithms,”
IEEE Transactions on Speech and Audio Processing, vol. 6, no.
4, pp. 373–385, July 1998.

[3] J. Hansen and M.A. Clements, “Constrained iterative speech en-
hancement with application to speech recognition,” IEEE Trans-
actions on Signal Processing, vol. 39, no. 4, pp. 795 – 805, Apr.
1991.

[4] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook
driven short-term predictor parameter estimation for speech en-
hancement,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 14, no. 1, pp. 163–176, 2006.

[5] P. Scalart and J.V. Filho, “Speech enhancement based on a
priori signal to noise estimation,” Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 2, pp. 629–632, May 1996.

[6] R. Chen, C.-F. Chan, and H. C. So, “Model-based speech en-
hancement with improved spectral envelope estimation via dy-
namics tracking,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 4, pp. 1324 –1336, May 2012.

[7] G. Zenton, K.-C. Tan, and T.G. Tan, “Postprocessing method for
suppressing musical noise generated by spectral subtraction,”
IEEE Transactions on Speech and Audio Processing, vol. 6, no.
3, pp. 287 –292, may 1998.

[8] R. F. Chen, C. F. Chan, H. C. So, J. Lee, and C. Y. Leung,
“Speech enhancement in car noise environment based on an
analysis-synthesis approach using harmonic noise model,” Pro-
ceedings of the International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 4413–4416, Apr. 2009.

7506


