
A NOVEL BINARY MASK ESTIMATOR BASED ON SPARSE APPROXIMATION

Abigail A. Kressner, David V. Anderson, and Christopher J. Rozell

Georgia Institute of Technology
School of Electrical and Computer Engineering

Atlanta, Georgia 30332 USA
{abbiekre,anderson,crozell}@gatech.edu

ABSTRACT

While most single-channel noise reduction algorithms fail to im-
prove speech intelligibility, the ideal binary mask (IBM) has demon-
strated substantial intelligibility improvements. However, this ap-
proach exploits oracle knowledge. The main objective of this pa-
per is to introduce a novel binary mask estimator based on a simple
sparse approximation algorithm. Our approach does not require or-
acle knowledge and instead uses knowledge of speech structure.

Index Terms— Ideal binary mask, sparse approximation, time-
frequency masking, noise reduction, intelligibility

1. INTRODUCTION

State-of-the-art single-channel noise suppression algorithms do not
improve the intelligibility of speech signals corrupted by noise.
However, one algorithm in particular has shown significant im-
provements in intelligibility for normal- and impaired-hearing lis-
teners—the ideal binary mask (IBM) [1, 2]. The IBM exploits
oracle knowledge of the target and interferer signals to preserve
only the time-frequency (T-F) regions that are target-dominated.
Although the necessity of oracle knowledge makes the IBM an im-
practical algorithm for nearly all real applications, the significant
increase in intelligibility makes the IBM a desirable benchmark for
T-F masking algorithms trying to restore the intelligibility of noisy
speech. While the IBM has been studied extensively in the literature
(e.g., [3, 4, 5, 6, 7, 8, 9, 10]), there are yet few practical algorithms
that can be used for its estimation in real-world applications.

By preserving only T-F regions that are target-dominated, the
IBM creates a T-F signal representation that is more sparse (i.e., has
fewer non-zeros) than the original mixture. Many recent advances
in signal processing have revolved around the notion of sparsity, and
numerous researchers in the signal processing community are devel-
oping methods to solve the sparse coding problem efficiently (i.e., in
real-time and with low-power). Sparse coding has been used to en-
hance corrupted speech in a few recent studies [11, 12, 13, 14, 15].
However, to the authors’ knowledge, no one has employed sparse
approximation methods to directly estimate a T-F mask. The main
objective of this paper is to introduce a novel binary mask estimator
based on a simple sparse approximation algorithm.
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DoD, Air Force Office of Scientific Research, National Defense Science and
Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

2. BACKGROUND

Sparse coding models have led to many state-of-the-art results in
both the signal processing and computational neuroscience commu-
nities. These models treat a signal as a linear combination of ele-
ments from a (potentially over-complete) dictionary with the intent
of finding an approximation using as few of the dictionary elements
as possible. An audio signal, x(t), is represented by a linear super-
position of a basic set of kernels, φi(t), . . . , φM (t), which can be
positioned arbitrarily and independently in time. The convolutional
form of this model is given as

x(t) =

M∑
m=1

nm∑
i=1

sm,iφm(t− τm,i), (1)

where τm,i and sm,i are the temporal position and amplitude of the
ith instance of the kernel φm(t), respectively. The notation nm indi-
cates the number of instances of φm(t), which need not be the same
across kernel functions. To code speech sounds efficiently, one needs
to find the optimal set of φm(t) (learning), as well as find the optimal
set of sm,i and τm,i (encoding or inference). With regard to learning,
the optimal dictionary for efficiently representing speech signals is a
family of gammatone-like functions [16]. With regard to inference,
Matching Pursuit (MP) is a greedy algorithm designed to minimize
the number of non-zero coefficients (i.e., the number of non-zero
sm,i) such that the reconstruction error is small [17]. Specifically
for the convolutional model, MP will first choose the time-shifted
basis that has the largest inner product with the signal, then subtract
the contribution due to that time-shifted basis, and repeat the process
iteratively until the signal is satisfactorily decomposed.

3. BINARY MASK ESTIMATORS

3.1. Ideal binary mask

The IBM is a relatively straight-forward algorithm. The general idea
is to create a binary mask, which is defined in the T-F domain as
a matrix of binary gain values. The gain is applied to the T-F rep-
resentation of the mixture of target and interferer signals before re-
combination in a synthesis filterbank. To compute the binary mask,
separate T-F representations of the target and interferer signals are
obtained using either a short-time Fourier transform or a gammatone
filterbank. For each T-F unit, the power levels of the target and inter-
ferer levels are computed to determine the local signal-to-noise ratio
(SNR). T-F units with a local SNR above a pre-defined threshold are
assigned a value of one in the mask and zero otherwise (Fig. 1b).
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Fig. 1. Time-frequency representations of (a) a mixture (clean speech cor-
rupted by pink noise at -5 dB SNR), (b) the ideal binary mask (0 dB thresh-
old), (c) the MP binary mask (threshold of about 1.3), and (d) the FT binary
mask (threshold of about 0.05). White indicates a value of one, and black
indicates a value of zero.

3.2. Matching Pursuit binary mask

To compute the MP binary mask, we use MP and a dictionary con-
sisting of gammatones to obtain a sparse approximation of the mix-
ture. Since speech is efficiently encoded with gammatones, ini-
tial iterations in MP will likely choose coefficients that approximate
speech energy rather than noise. Thus, by choosing a suitable stop-
ping criteria for MP, the resulting set of coefficients will largely con-
tain gammatones that fall in the T-F regions of the target speech.
Instead of using the coefficients to synthesize a new signal (which
may be impractical in certain applications), we use the sparse set of
coefficients to identify target-dominated T-F regions and construct a
binary mask (as described in the following paragraph). With this bi-
nary mask, we can modify the original signal rather than synthesize
a new one.

Each coefficient MP chooses corresponds to a time-shifted gam-
matone. Since gammatones are localized to specific regions of fre-
quency and time, we conclude that the regions corresponding to
the chosen time-shifted gammatones likely contain target speech.
Therefore, we set the binary mask for the union of these regions
to one (Fig. 1c).

3.3. Filter-threshold binary mask

MP is highly nonlinear and requires a nontrivial level of computa-
tion and processing in order to account for structure in the signals.
Given these drawbacks, we compare against a third mask estimator

to look at what there is to gain by accounting for additional underly-
ing structure. This estimator is loosely based on the filter and thresh-
old (FT) algorithm [18]. FT is a very simple, causal approach to effi-
cient audio coding that achieves efficiency primarily by making use
of a filterbank based on the human cochlea. It chooses coefficients
based on the values and positions of the filter response magnitudes
that exceed a preset threshold. For our FT-based mask estimator, we
compute filter response magnitudes for the mixture signal, and then
simply set the mask to one if the response magnitude is greater than
or equal to the threshold (Fig. 1d).

4. METHODS

Speech samples were created using the TIMIT speech corpus testing
set re-sampled to 8 kHz [19]. A male- and female-spoken sentence
was chosen from each of the eight dialect regions to form a set of
sixteen sentences. To create the noisy signals, we added pink noise
or realistic noise from the AURORA database (babble, car, street,
and train) at input SNR levels of 0 dB and -5 dB.

We performed noise suppression on each of the stimuli using
the three binary mask approaches described in Section 3. All al-
gorithms used the same gammatone filterbank (24 4th-order filters
spaced one ERB apart between 100Hz and 4 kHz, each with one-
ERB bandwidth) [20]. Analysis was performed in the T-F domain,
and we applied masks point-wise to the filter response of the mix-
ture signal. To do the reconstruction, each frequency band of the
modified response was delayed and scaled such that the peaks of the
impulse response of each band had a maximum at 4 ms [20]. All
of the frequency bands were then added together to obtain a single
waveform.

For the IBM, we computed the filter response magnitudes for the
clean and noise signals, and then summed the energy in each band
within 20 ms time frames (Hamming window with 50% overlap).
For each band, we assigned the mask a value of one at all 160 time
samples within the time frame if the target energy was greater than
or equal to the interferer energy scaled by a threshold factor; note
that we assigned T-F units a value of one if the criterion was met in
either of the overlapping frames. We used a threshold of -Inf dB to
simulate the unprocessed condition.

For the MP binary mask estimation, we first computed the im-
pulse responses of each gammatone filter and normalized them to
have a unit norm. With a dictionary made up of all time-shifts of
the impulse responses, we ran MP on the full mixture signal until
all remaining coefficients fell below a frequency-dependent thresh-
old. The frequency dependency was implemented to encourage co-
efficients in bands where speech energy is low. We heuristically
chose the coefficient thresholds to scale by a ratio linearly spaced
between one-fourth and one. Therefore, the “threshold” specified
from this point forward is the coefficient threshold at the lowest fre-
quency band, the coefficient threshold at the highest frequency band
is one-fourth of the “threshold,” and the coefficient thresholds at the
bands in between are linearly spaced between the “threshold” and
one-fourth of the “threshold”.

Conceptually, we converted the final set of MP coefficients into
a binary mask as follows (actual implementation was more efficient).
For each of the chosen coefficients, we computed the filter response
magnitudes to the corresponding time-shifted gammatone impulse
response. Then we assigned the mask a value of one if the response
magnitude in the corresponding T-F unit was greater than 1% of the
maximum response.

To prevent a rapidly fluctuating mask (particularly in the higher-
frequency bands where gammatones are very short in duration), we
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Fig. 2. Average predicted intelligibility in percent words correct (using
STOI) when the masks are applied to speech corrupted by pink noise [left
column] and realistic noise (babble, car, street, and train) [right column] at
0 dB [red circles] and -5 dB [blue squares] input SNRs for a range of thresh-
olds: (a-b) IBM, (c-d) the MP mask, and (e-f) the FT mask. UN indicates
the unprocessed condition. Error bars indicate plus and minus one standard
deviation.

post-processed each band of the mask with 10 ms frames (50% over-
lap) so that if the mask was initially set to one during any of the time
samples in the frame, we set the mask to one at all time samples in
the frame.

For the FT binary mask estimation, we computed filter response
magnitudes for the mixture signal, and then assigned the mask a
value of one if the energy in the corresponding T-F unit was greater
than or equal to the threshold.

5. RESULTS

We used the short-time objective intelligibility (STOI) measure,
which was designed to maintain high correlation with subjective
intelligibility of noisy and T-F-masked noisy speech [21], to pre-
dict intelligibility outcomes for the mask estimators (Fig. 2). We
converted STOI values to predictions of the percentage of words
correct using the nonlinear mapping for the IEEE Corpus (Table II
in [21]). Predictions for the IBM are consistent with results in the
literature. However, STOI does not predict the MP mask to increase
intelligibility to the same degree. For the case of pink noise, STOI
does predict slight increases in intelligibility when the MP threshold
is around 0.4 for 0 dB SNR signals and when the MP threshold is
around 0.6 for -5 dB SNR signals (no significance testing). With
realistic noise, MP maintains intelligibility when the MP threshold
is below about 0.25 for both -5 dB and 0 dB. In contrast, STOI
predicts that intelligibility will to degrade when the FT binary mask
is applied in the presence of realistic noise. In the case of pink noise,
STOI predicts the FT mask to maintain intelligibility at very low
thresholds but never improve it.
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Fig. 3. Binary mask error rate across 16 sentences that have been corrupted
with pink noise at -5 dB for (a) the MP mask and (b) the FT mask for a
range of thresholds. The thick bars near the bottom indicate when each of the
criterion are [black] satisfied and [grey] not satisfied.

6. DISCUSSION

Given that few practical algorithms exist for estimating the IBM in
real-world applications, the MP mask is a step in the right direction.
However, STOI does not predict that the current MP mask algorithm
will increase intelligibility to the same degree as the IBM. We inves-
tigated the MP mask further by looking more closely at the type of
errors that it makes.

Mask estimators can make one of two types of errors. Type-I er-
rors occur when masker-dominated T-F units are incorrectly labeled
target-dominated (i.e., false alarm or false positive), and type-II er-
rors occur when target-dominated T-F units are incorrectly labeled
masker-dominated (i.e., miss or false negative). With these defini-
tions, we treat the ground truth as the IBM with a 0 dB threshold.
Based on the work presented by Li and Loizou [22], we know that
when only uniformly random type-I errors are present, type-II er-
ror rates as high as 60% still yield high intelligibility, and when only
uniformly random type-II errors are present, type-I error rates as low
as 20% are detrimental to intelligibility. Li and Loizou also demon-
strated that intelligibility was greater than 90% when overall error
rates for uniformly random error (both type-I and type-II together)
were at or below 10%. We show in Fig. 3 average error rates for a
range of MP and FT masks using the 16 speech sentences corrupted
with pink noise at -5 dB SNR. If we were to take into account the
conditions set forth by Li and Loizou and assume that meeting the
criteria jointly leads to high intelligibility, we would expect a mask
that satisfies all three criteria to yield high intelligibility. The FT
mask algorithm fails to meet all three criteria jointly. Therefore, we
expect to see the poor intelligibility that STOI predicts. However,
the MP mask algorithm with a threshold at or around 1.3 meets all
three criteria jointly, and therefore, we expect STOI to predict high
intelligibility.

Since STOI predictions conflict with this notion, we look more
closely at the errors themselves rather than just the rate of error for
an example sentence in Fig. 4. We compare three masks against the
IBM with a 0 dB threshold: (a) the IBM with a -10 dB threshold,
(b) the MP mask with a 1.3 threshold, and (c) a simulated mask with
uniformly distributed random error. Visually, it is easy to see that the
first mask contains a high number of false positives relative to the
reference. With regard to the second and third masks, false positives
and false negatives are grouped together in the former but randomly
distributed in the latter.

Again assuming that the IBM with a 0 dB threshold is ground
truth, we can compute error rates for these individual masks: IBM
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Fig. 4. Time-frequency representations of false positives (red), false nega-
tives (yellow), correct positives (white), and correct negatives (black) relative
to the IBM with a 0 dB threshold for: (a) the IBM with a -10 dB threshold, (b)
the MP mask, and (c) a simulated mask with uniformly distributed random
error.

with a -10 dB threshold (55% type-I, 0% type-I, 47% overall, STOI
predict 91% correct), MP (2% type-I, 59% type-II, 9% overall, STOI
predict 8% correct), and a simulated uniformly distributed random
error case (5% type-I, 26% type-II, 8% overall, STOI predicts 74%
correct). First, we point out that even with an overall error rate (rel-
ative to IBM with a 0 dB threshold) much higher than 10%, IBM
with a -10 dB threshold yields very high intelligibility. Second, we
designed the simulated mask to have low type-I error, an overall er-
ror rate less than 10%, and type-II error less than 60% (the same
criterion we used to design the MP mask). Even though the error
rates between the second and third masks are similar, STOI predicts
a reasonably high intelligibility for the case of randomly distributed
errors, but very low intelligibility for the case of error that is grouped
locally. Without listener studies, we cannot be sure of the effect that
the distribution of the errors has on the resulting intelligibility.

It is our hypothesis that structured errors influence intelligibil-
ity differently than randomly distributed error. As an additional
example, we consider another case: IBM with a 2.5 dB threshold
(0% type-I, 51% type-II, 7% overall, STOI predicted 41% correct).
According to Li and Loizou’s study with randomly distributed er-
ror [22], we would expect high intelligibility in this case given that
all three criterion on the error rates are met. Instead, STOI predicts
low intelligibility. It seems that acceptable type-I and type-II er-
ror levels are actually reversed for structured error that is grouped
in T-F regions as compared to uniformly random error. To summa-
rize, type-II errors are more tolerable when the error in question is
randomly distributed, but type-I errors are more tolerable when the
error in question is structured in T-F groups. It remains to be seen
with listener studies what the allowable overall error rate is for non-
randomly distributed error types with interacting type-I and type-I
errors.

Performance is very sensitive to the parameters which control
the conversion from MP coefficients to the binary mask. Future work
will include a more thorough investigation of the optimal method to

do this conversion. Furthermore, we will likely need to take into
account higher-order statistical structure in order to more accurately
distinguish the target speech from challenging interfering signals. To
accomplish this, we may need to use sparse approximation alterna-
tives to MP or models beyond sparsity.

7. CONCLUSIONS

We have demonstrated that sparse approximation is a promising di-
rection for binary mask estimation because it enforces a meaningful
structure on the binary T-F mask that makes it possible to decrease
estimation errors and maintain intelligibility. However, we cannot
resolve specific design criteria without listener studies. Although the
algorithm presented here is a promising proof of concept, it employs
a non-causal estimator. A key factor going forward is altering this
approach to use more realistic frame-based (causal) computations.
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