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ABSTRACT
Recent studies on speech separation show that the ideal bi-
nary mask (IBM) substantially improves speech intelligibil-
ity in noise. Supervised learning can be used to effectively
estimate the IBM. However, supervised learning has trouble
dealing with the situations where the probabilistic properties
of the training data and the test data do not match, resulting
in a challenging issue of generalization whereby the system
trained under particular noise conditions may not generalize
to new noise conditions. We propose to use a novel metric
learning method to learn invariant speech features in the ker-
nel space. As the learned features encode speech-related in-
formation that is robust to different noise types, the system
is expected to generalize to unseen noise conditions. Evalua-
tions show the advantage of the proposed approach over other
speech separation systems.

Index Terms— Speech Separation, Domain Adaptation,
Kernel Learning, SVM

1. INTRODUCTION

Monaural speech separation is a fundamental problem in
speech processing where one can only utilize intrinsic prop-
erties of a sound mixture to separate the target speech from
the masker. Researchers have attempted to solve monaural
speech separation for decades. Speech enhancement ap-
proaches have been extensively studied, which utilize statis-
tical properties to enhance speech that has been corrupted by
non-speech additive noise. Model based approaches rely on
pre-trained models to capture the characteristics of individual
sound sources for separation. Recent studies in computational
auditory scene analysis (CASA) are inspired by human per-
ceptual principles. These efforts so far have achieved limited
success.

The ideal binary mask (IBM) has been proposed as a main
computational goal for speech separation, which is defined as
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a binary matrix along time and frequency where a matrix el-
ement is 1 if the signal-to-noise ratio (SNR) within the cor-
responding time-frequency (T-F) unit is greater than a local
SNR criterion (LC) and 0 otherwise [1]. Previous studies
have demonstrated that the IBM leads to large improvement
on speech intelligibility in noise [2, 3]. To estimate the IBM,
one can formulate the problem as binary classification, i.e., a
trained classifier decides each T-F unit to be either speech-
dominant or interference-dominant based on extracted fea-
tures.

One issue in supervised classification is that the training
data and the test data are expected to extract from the same
distribution. When the distribution changes, the trained mod-
els may not produce reasonable results in the test dataset. To
generalize a speech separation system to unseen noise condi-
tions, one can build a massive training set including a large
variety of noises. However, such training is very computa-
tionally expensive and it would be impossible to include all
noises in a training set.

In this study, we propose to learn invariant speech fea-
tures in the kernel space using Information-theoretic Metric
Learning (ITML) [4]. Because the learned kernel encodes in-
variant information related only to speech, a classifier trained
on this kernel should be able to generalize to unseen noise
types. We train support vector machines (SVM) based on the
learned kernels and successfully classify test data under new
noise conditions. Note that we only consider speech separa-
tion from non-speech interference in this study.

In the next section, we relate our approach to existing
work on speech separation and metric learning. The over-
all framework of the system is given in Section 3. Section 4
describes how to learn the kernel and incorporate it into the
SVM. We evaluate the system in Section 5 and conclude in
Section 6.

2. RELATED WORK

Supervised learning has been recently used to classify T-F
units, including multilayer perceptrons (MLP) [5], Gaussian
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mixture models (GMM) [6], and SVM [7]. These approaches
mostly deal with the situations in which the test noises are
included in the training set. However, if noises are not seen
in the training phase, the probabilistic properties of the ex-
tracted features in the test set may differ significantly from
those in the training set and the trained models may not work
well under these noise conditions.

In machine learning, transfer learning and domain adap-
tation aim to compensate for data shift, i.e., a change in the
feature distribution from the training set to the test set [8].
Relevant methods have been developed in the natural lan-
guage processing (NLP) [9] and computer vision communi-
ties [10, 11, 12], which can be roughly categorized as clas-
sifier adaptation and feature transformation. The former ap-
proach utilizes the target domain information to adapt the pa-
rameters of classifiers [12]. In the speech separation field,
Ozerove et al. [13] and our previous study [14] utilize noise
only intervals to collect noise information for model adapta-
tion. Because the adaptation needs to detect the noise inter-
vals in the test mixtures, it is difficult to apply to real-time
processing.

On the other hand, feature transformation utilizes metric
learning methods to transfer the input features between do-
mains and then apply a classifier [9, 10, 11]. The advantage
of this approach is that the learned features can be domain-
independent, which enables it to deal with novel problems
with new feature types or dimensionalities [15, 11]. For
speech separation, one important property is that the features
extracted from speech are usually much more stable than
those from noises. In other words, if we can capture the
common speech characteristics independent of noise types, it
is possible to utilize them to separate speech under various
noise conditions. In this paper, we learn invariant speech
features across different noise conditions, which allow for
generalization to new noises without any prior knowledge of
the noise.

3. SPEECH SEPARATION USING KERNEL SVM

3.1. Feature Extraction

An input signal s(t) is first passed through a 64-channel gam-
matone filterbank spanning from 80 Hz to 5000 Hz. The re-
sponse of each filter channel is then divided into 20-ms time
frames with 10-ms frame shift, forming a cochleagram [16].
We use uc,m to denote a T-F unit for frequency channel c and
time frame m. For each T-F unit, we extract acoustic features
including amplitude modulation spectrogram (AMS), relative
spectral transform and perceptual linear prediction (RASTA-
PLP), mel-frequency cepstral coefficients (MFCC), and pitch-
based features. Further, for every dimension of the features,
we calculate delta features across time frames and frequency
channels to capture variation information. The concatenation
of these features have been proven to be effective in speech

separation [17] and are used in this paper.

3.2. SVM Classification with Learned Kernels

Because of the different spectral properties of speech, we train
an SVM in each channel to estimate the IBM. Previous stud-
ies directly use extracted features to train the SVM and yield
accurate classification results under matched noise conditions
[7, 17]. In order to generalize the system to unseen noise
conditions, we aim to learn a non-linear transformation ϕ :
Rd → Rd′

to map original features into a high dimensional
space, where d and d′ denote the dimensionality of the origi-
nal space and the kernel space respectively. Here, the under-
lying idea of the feature transformation is that for two data
points from different noise conditions (domains), the learned
transformation should maximizes the distances between them
if they have different labels and minimizes the distances if
they have the same label. This class-based cross-domain con-
straint will be applied during the transformation learning.

Furthermore, because the SVM can be viewed as a ker-
nel machine, instead of explicitly computing ϕ(x), we only
need to compute a kernel function κ such that κ(xi,xj) =
ϕ(xi)

Tϕ(xj) [18]. Therefore, we first learn a kernel us-
ing data from multiple noise conditions and then apply the
learned kernel to the SVM for supervised learning. In the test
phase, each data point is also kernelized for classification.
We will discuss kernel learning in detail in the next section.

Finally, the SVM labels T-F units in each channel to form
an estimated IBM. The separated speech is resynthesized us-
ing the cochleagram of the mixture and the estimated IBM
[16].

4. DOMAIN-INVARIANT KERNEL LEARNING

4.1. Cross-domain Constraints

In this section, we discuss how to learn domain-invariant fea-
tures in the kernel space. For a general metric learning prob-
lem, given a data set X = [x1, . . . ,xn],xi ∈ Rd, one aims to
learn an appropriate Mahalanobis distance parameterized by
a positive definite matrix W between xi and xj :

dW (xi,xj) = (xi − xj)
TW (xi − xj) (1)

Since W is symmetric positive definite, by factorizing W as
W = GTG, we can equivalently view the distance dW =
||Gxi−Gxj ||2, that is, the transformation G serves as a linear
transformation applying to data points.

Since the linear transformation is not powerful enough for
our application, we are interested in working in the kernel
space, where we use a non-linear function ϕ to map input into
a high-dimensional space. Then, the distance is:

dW (ϕ(xi), ϕ(xj)) = (ϕ(xi)− ϕ(xj))
TW (ϕ(xi)− ϕ(xj))

(2)
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To learn the desired metric, we use the data to create
pairwise similarity and dissimilarity constraints. To improve
the generalizability in our study, we generate the constraints
across different domains based on the labels. Suppose that the
training set consists of multiple domainsDm,m = 1, . . . ,M ,
corresponding to multiple noise conditions, and a data point
in the domain Dm is denoted as xDm

i with its label yDm
i . To

learn the domain-invariant transformation, we use the follow-
ing cross-domain constraints. For a pair of data points xi

and xj from two different domains Da and Db, we create the
constraints:

dW (ϕ(xDa
i ), ϕ(xDb

j )) ≤ u, if yDa
i = yDb

j

dW (ϕ(xDa
i ), ϕ(xDb

j )) ≥ l, if yDa
i ̸= yDb

j

(3)

where u and l are parameters representing the distance thresh-
olds. As we create cross-domain constraints for every pair
of domains, there are totally

(
M
2

)
pairs of domains for con-

straints.
These cross-domain constraints enforce the algorithm to

learn a metric such that the data points with the same label
should be close to each other no matter which domains they
belong to. By applying the constraints to every pair of do-
mains, the learned transformation captures not only the do-
main shift between any two of them but also the common
information shared by all these domains. Since the data in
different domains correspond to speech mixed with differ-
ent noises, the transformation presumably encodes speech-
related information that is independent to noise types.

4.2. Kernel Learning with ITML

Given the constraints in Eq. (3), our problem is to learn
a positive-definite matrix W that parameterizes the Maha-
lanobis distance. We adopt the ITML [4] algorithm and dis-
cuss its kernelized version in this subsection. The algorithm
uses the LogDet divergence Dld to regularize W against a
specified positive definite matrices W0:

Dld(W,W0) = trace(WW−1
0 )− log det(WW−1

0 ) (4)

and the metric learning problem is:

min
W≽0

Dld(W,W0)

s.t. dW (ϕ(xDa
i ), ϕ(xDb

j )) ≤ u, if yDa
i = yDb

j

dW (ϕ(xDa
i ), ϕ(xDb

j )) ≥ l, if yDa
i ̸= yDb

j

a, b ∈ {1, . . . ,M}

(5)

Therefore, we are interested in finding a metric W that is
close to an original metric W0 but satisfies our desired con-
straints. Note that, we create the constraints for every pair
of domains, which is different from previous cross-domain
metric learning [10, 11], where only one pair of domains is
considered.

We now consider kernelizing the problem. Given a set of
data points, let K0 denote the input kernel matrix for the data,

that is, K0(i, j) = κ0(xi,xj) = ϕ(xi)
Tϕ(xj). In this study,

we choose the Gaussian kernel to introduce nonlinearity, i.e.,
κ0(xi,xj) = exp(− ||xi−xj ||2

2σ2 ). We use K(i, j) to denote
the kernel we want to learn, i.e., K(i, j) = κ(xi,xj) =
ϕ(xi)

TWϕ(xj). Therefore, according to Eq. (2), we have:

dW (ϕ(xi), ϕ(xj))

=ϕ(xi)
TWϕ(xi)− 2ϕ(xi)

TWϕ(xj) + ϕ(xj)
TWϕ(xj)

=K(i, i) +K(j, j)− 2K(i, j)
(6)

In addition, to avoid an infeasible solution in Eq. (5), we
incorporate a slack variable ξ to provide a tradeoff between
minimizing the divergence between K and K0 and satisfying
the constraints. Finally, the non-linear metric learning prob-
lem can be formulated to a kernel learning problem:

min
K≽0,ξ

Dld(K,K0) + γDld(diag(ξ), diag(ξ0))

s.t. K(i, i) +K(j, j)− 2K(i, j) ≤ ξi,j , if yi = yj

K(i, i) +K(j, j)− 2K(i, j) ≥ ξi,j , if yi ̸= yj

(xi, yi) ∈ Da, (xj , yj) ∈ Db, and a, b ∈ {1, . . . ,M}
(7)

where, γ is the tuning parameter. The entries in ξ0 are set to
u for similarity constraints and l for dissimilarity constraints.

To solve this optimization problem, we follow the ap-
proach given in [4] which employs Bregman projections to
iteratively compute the kernel [11]:

Kt+1 ← Kt + βKt(ei − ej)(ei − ej)
TKt (8)

where ei is the standard basis vector with a 1 in the ith coor-
dinate and β is a parameter computed in the algorithm.

Once we learn the kernel K, it is straightforward to use
Eq. (6) to compute the distance between two points xi and
xj that are in the training set. But for new data points z1 and
z2 that are not in the training set, we need to compute the
kernel function κ(z1, z2). Here, we directly give the equation
to compute the kernel for a pair of arbitrary data points z1 and
z2:

κ(z1, z2) = κ0(z1, z2) + kT
1 K

−1
0 (K −K0)K

−1
0 k2 (9)

Here, ki = [κ0(zi,x1), . . . , κ0(zi,xn)]
T , and xi is the data

point in the training set used to learn the kernel. For details of
the kernel learning algorithm, see [4] and [19].

5. EXPERIMENTS

We now evaluate our kernel learning based separation system.
The IEEE corpus [20] is used to train and test the system. The
input SNR is -5 dB and LC is set to -10 dB, which pose a very
challenge problem. To learn the domain-invariant kernel, we
first choose 10 utterances mixed with 5 types of noise out of a
100 non-speech noise corpus [21]. Thus, there are around
3,000 data points for each noise condition. We randomly
choose a subset of around 100 data points in each condition
to create the cross-domain constraints, so 100× 100×

(
5
2

)
=
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(a) Ideal binary mask
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(b) Gaussian kernel SVM mask
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(c) Domain-invariant kernel SVM mask
Fig. 1: IBM estimation results. (a) IBM for the mixture.
(b) Estimated IBM using the Gaussian kernel SVM. (c) Es-
timated IBM using the domain-invariant kernel SVM. White
regions represent 1s and black 0s.

100, 000 pairs of constraints are used in the kernel learning.
We set the distance thresholds u and l to 5% and 95% per-
centile of the distribution of the observed distances between
pairs of points respectively. The slack variable γ and the vari-
ance of the Gaussian kernel σ are tuned using cross validation.
After we learn the kernel, we train the SVM using another 30
utterances mixed with the same 5 noises. According to Eq.
(9), we compute the kernel for these data for SVM training.

To test the system, we use 10 utterances mixed with 12
types of noise—N1: white noise, N2: cocktail party noise,
N3: rock music, N4: telephone, N5: fan noise, N6: clock
alarm, N7: traffic noise, N8: crowd noise with clap, N9: bird
chirping with water flowing, N10: wind noise, N11: rain
noise, N12: babble noise. The test noises cover both sta-
tionary and non-stationary noises and have very different fre-
quency characteristics. None of the utterances and the noises
are seen in the kernel learning and SVM training phase.

As an example, Fig. 1 illustrates mask estimation results
for an utterance mixed with an unseen crowd noise with clap
at -5 dB using the SVM with the Gaussian kernel and the
SVM with the learned domain-invariant kernel respectively.
It is clear that the Gaussian kernel SVM leads to severe classi-
fication errors because the noise is significantly different from
those in the training set. By using kernel learning the system
yields a substantially better mask due to the robustness of the
learned kernel against different noise types.

To systematically quantify the performance of our system,
we compute the HIT rate, defined as the percent of the target-
dominant units in the IBM correctly classified, and the false
alarm (FA) rate, defined as the percent of the interference-

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12
0

0.2

0.4

0.6

0.8

Noises

H
IT

−F
A

 

 

Hendriks et al.
Han and Wang
Proposed

Fig. 2: HIT−FA comparison under unseen noise conditions

dominant units in the IBM wrongly classified. The differ-
ence HIT−FA has been shown to be well correlated to human
speech intelligibility [6].

Table 1 shows the average classification accuracy and the
HIT−FA rates over all 12 noises. We compare the Gaussian
kernel SVM (G-SVM) and the SVM with learned domain-
invariant kernel (KL-SVM). In the left two columns of the
table, in order to eliminate the impact of pitch errors we
use ground-truth pitch extracted from the premixed speech
[22] to generate the pitch-based features. In the right two
columns, we use a pitch estimator [23] to extract pitch from
mixtures. Both experiments clearly show that learning the
domain-invariant kernel significantly boosts the classification
accuracy and the HIT−FA rates under new noise conditions.

Table 1: Average classification accuracy and HIT−FA rates.
Ground-truth Pitch Estimated Pitch

G-SVM KL-SVM G-SVM KL-SVM
Accuracy 0.742 0.794 0.703 0.746
HIT−FA 0.469 0.537 0.390 0.456

We further compare the proposed method with two other
speech separation approaches. The first one is a state-of-
the-art speech enhancement algorithm based on a minimum
mean-squared error (MMSE) estimator proposed by Hendriks
et al. [24]. The second one is our previous approach which
uses the rethresholding technique to adapt the SVM classifi-
cation under different noise conditions [14]. The proposed
approach in this comparison uses the estimated pitch. As
shown in Fig. 2, the proposed approach achieves the highest
HIT−FA under every noise condition. On average, the pro-
posed approach outperforms Hendriks et al. by 14 percentage
points and our previous system by 4 percentage points. We
point out that, our previous system needs noise information
extracted from the test mixture to adapt the trained model,
while the proposed approach can be directly applied to the
test mixture and does not need to collect information from
the new noise, which is a considerable advantage.

6. CONCLUSION

In this study, we have proposed to learn a domain-invariant
kernel to encode speech-related information that is robust to
different noise types. With the learned kernel, the speech sep-
aration system can be applied to new noise conditions without
any prior information of the noise.
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