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ABSTRACT
In this paper, we propose solutions for the online adaptation of op-
timal FIR filters for speech enhancement in DFT subbands. An im-
portant ingredient to such filters is the estimation of the inter-frame
correlation of the clean speech signal. While this correlation was
assumed to be perfectly known in former studies, we discuss two
online estimation approaches based on a constant noise inter-frame
correlation and on the use of a binary mask. We show that a filter-
ing of subband signals based on these estimated quantities outper-
forms a conventional, instantaneous spectral weighting, such as the
frequency-domain Wiener filter at least for high SNR conditions.

Index Terms— Noise reduction, MVDR, Wiener filter, filter-
bank system, subband filtering

1. INTRODUCTION

Single-channel noise-reduction (NR) algorithms often process the
noisy speech in the time-frequency domain. In many cases, they
are based on the discrete short-time Fourier transform (DFT) and
an appropriate overlap/add or overlap/save method for resynthesis.
NR is then achieved by using instantaneous and real-valued spec-
tral weights, e.g., depending on the a-priori SNR [1] in case of a
Wiener filter [2, 3]. However, as stated in recent works by Ben-
esty and Huang [4, 5], these approaches do not explicitly exploit the
correlation inherent in the signals or caused by overlapping analy-
sis frames. Therefore, it seems promising to interpret the subband
signals of a filter-bank system (e.g. based on a DFT) as time do-
main signals and apply filters instead of instantaneous weights. The
main difference of filtering the subband signals instead of using in-
stantaneous real-valued weights lies in the estimation of not only the
magnitude of the clean speech DFT coefficients, but also their phase.
Furthermore, a longer memory is used in the process. In this work,
we consider the filtering of subband signals of a DFT filter-bank sys-
tem based on the algorithms presented in [4, 5], where the authors
develop an MVDR and (time domain) Wiener filter based on the
inter-frame correlation (IFC) of the clean speech signal, which was
assumed to be perfectly known in [4, 5]. The focus of our contribu-
tion lies on this quantity and its blind estimation. We will present
two algorithms to estimate the noise IFC, which directly leads to the
required speech correlation, and discuss their characteristics. In the
first approach we assume the noise IFC to be a fixed quantity. The
other one uses a binary mask as an extended voice activity detector
(VAD) to update the noise IFC during speech pauses.

The paper is structured as follows. In the next section we de-
scribe the signal model and define the noise reduction filters based
on temporal filtering of the subband signals. In the third Section, we
analyze the IFC of speech and noise and develop estimation algo-
rithms. In Section 4, we evaluate these algorithms and we conclude
our work in Section 5.

2. SUBBAND FILTERS

2.1. Signal Model

Throughout this paper we consider an additive noise model

y(n) = x(n) + v(n), (1)

where y(n) is the noisy speech, x(n) the clean speech and v(n) the
noise signal, while n is the discrete time index. Furthermore, we
assume statistical independence of the noise and the clean speech
signal. In the short-time frequency domain, these signals are repre-
sented by

Y (k,m) = X(k,m) + V (k,m). (2)

Here, k is the frequency bin index and m is the frame index. In each
frequency subband we define FIR filters of order L-1 as

X̂(k,m) =

L−1∑
l=0

h∗(k,m, l)Y (k,m− l) (3)

= hH(k,m)y(k,m). (4)

The vector h(k,m) contains the time-varying filter coefficients
h(k,m, l) in each subband k and the vector y(k,m) = [Y (k,m),
Y (k,m − 1), . . . , Y (k,m − L + 1)]T of length L contains the
history of noisy subband samples. The superscript H represents the
Hermitian transpose operator. A conventional instantaneous spectral
weighting could be realized with L = 1.

2.2. Inter-Frame Correlation and Filter Design

In this work we use both the MVDR and the Wiener filter [4, 5] in
subbands, both of which depend on the inter-frame correlation (IFC).
In case of the clean speech signal the IFC is given by

γX(k,m) =
E {x∗(k,m)X(k,m)}

E {|X(k,m)|2} . (5)

Here, x(k,m) = [X(k,m), X(k,m− 1), . . . , X(k,m−L+ 1)]T

contains a history of the clean speech subband signal X(k,m).
Based on this definition, the two filter functions can be formulated.
First, the MVDR filter defined in [4, 5] reduces the output noise
power in each subband under the constraint hH(k,m)x(k,m) = 1
and is given as

hMVDR(k,m) =
Φ−1

Y (k,m)γ∗X(k,m)

γT
X(k,m)Φ−1

Y (k,m)γ∗X(k,m)
. (6)

Here, ΦY (k,m) is the covariance matrix of the k-th noisy subband
signal and the superscript T represents the transpose operator. If all
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quantities are known, this filter provides, at least in theory, noise
reduction without target signal distortion. Secondly, the subband
time-domain Wiener filter which minimizes the mean-square error
is defined based on the speech power φX(k,m) = E

{
|X(k,m)|2

}
as

hWiener(k,m) = φX(k,m)Φ−1
Y (k,m)γ∗X(k,m). (7)

When comparing the filter definitions in (6) and (7), the filters can
be summarized as

hMVDR(k,m) = cMVDR(k,m)Φ−1
Y (k,m)γ∗X(k,m) (8)

hWiener(k,m) = cWiener(k,m)Φ−1
Y (k,m)γ∗X(k,m) (9)

with

cMVDR(k,m) =
1

γT
X(k,m)Φ−1

Y (k,m)γ∗X(k,m)
(10)

cWiener(k,m) = φX(k,m). (11)

In case of the Wiener filter, the filter coefficients are set to zero
during speech pauses due to the multiplicative effect of the speech
power φX(k,m). In case of the MVDR filter, the expression in (10)
represents a power normalization. However, in terms of implemen-
tation issues, the MVDR filter is more robust, since the inverse of
the covariance matrix also appears in the denominator. Therefore,
numerical errors (due to the estimation process or the calculation of
the inverse) are better balanced.

3. INTER-FRAME CORRELATION ESTIMATION

The IFC γY (k,m) of the noisy subband signal Y (k,m) can be eas-
ily estimated by recursive smoothing. If the IFC of the noise signal
is known, γX(k,m) can then be calculated as [4, 5]

γX(k,m) =
φY (k,m)

φY (k,m)− φV (k,m)
γY (k,m)

− φV (k,m)

φY (k,m)− φV (k,m)
γV (k,m). (12)

Here, φY (k,m) and φV (k,m) are the power of the noisy signal and
the noise signal, respectively. The noise power can be estimated by
well known techniques such as the Minimum Statistics [6] or the
MMSE-based approach presented in [7]. Note that (12) corresponds
to a Maximum Likelihood (ML) estimate of γX(k,m) in case of
jointly Gaussian distributed signals.

3.1. VAD-Based Estimation

Based on a voice activity detector (VAD), the IFC γV (k,m) of the
noise signal can be updated during speech pauses. However, this ap-
proach requires stationarity of the noise signal during speech activity
and depends on the performance of the VAD. If the speech signal is
corrupted by nonstationary noise, the properties of γV (k,m) might
change during speech activity. Furthermore, if the VAD doesn’t
work perfectly, it might interpret speech sequences as noise (which
leads to speech distortion) or fails to update γV (k,m). In our work,
we follow two different approaches, i.e. (i) we assume the noise IFC
to be a constant vector for all frequencies and frames and (ii) extend
the idea of VAD to a binary mask approach.
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Fig. 1. Histograms of the real part of IFC for two noise types (WGN
in (a), babble noise in (b)) and speech (c), estimated by temporal
averaging. The respective mean values and the theoretical values
based on the frame overlap (red squares) are drawn at the bottoms of
the first two plots for both noise types and additionally in (d). The
time lag l corresponds to the index of the filter coefficients in (3).

3.2. Constant Noise IFC

If the noise signal is stationary, the expected values needed to calcu-
late its IFC analogue to (5) can be estimated by temporal averages
which approach the ML solution for Gaussian processes. Figure
1 shows histograms of the real part of the IFC for white Gaussian
noise (WGN), non-stationary babble noise and speech (the respec-
tive imaginary parts are similarly distributed). Additionally, the esti-
mated means are plotted for l = 1, . . . , L−1. We observe Gaussian
distributions for both noise types while the histogram of the speech
IFC shows a super-Gaussian shape and is asymmetric for small time
lags l. If we assume that the noise signal is WGN, the IFC γV (k,m)
is solely defined by the frame overlap and the window function h(n)
of the analysis filter-bank system. This means, we can calculate an
estimate of the l-th component of γV (k,m) by

γ̂V {l}(k,m) =

∑
n h(n)h(n+ lR)∑

n h
2(n)

, (13)

where R represents the frame advance. These theoretical values are
also shown in Fig. 1 (a), (b) and (d) as red curves. It is obvious
that this estimate works very well for WGN as well as for babble
noise and other noise types tested. Table 1 summarizes the small
mean square errors (MSE) between the estimator in (13) and the
complex-valued IFCs estimated by temporal averaging for different
noise signals.

3.3. Estimation Based on a Binary Mask

Following the definition in (5), the IFC of the clean speech signal is
not defined during speech pauses since all elements in x(k,m) are
zero. Therefore, it seems reasonable not to detect speech activity
globally, i.e. across all subbands, but within each subband. This
corresponds to the estimation of a binary mask. The ideal binary
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Noise type MSE
WGN 1.0 E-3
Babble, party 6.6 E-3
Babble, restaurant 6.2 E-3
Traffic 9.0 E-3

Table 1. Mean square error between the theoretical noise IFC based
on the frame overlap in (13) and the respective complex-valued IFCs
based on time averages.

mask [8] is defined based on the SNR in each point in the time-
frequency plane

M(k,m) =

{
1 , if SNR(k,m) > δ

0 , otherwise
. (14)

If all entries of m(k,m) = [M(k,m),M(k,m−1), . . . ,M(k,m−
L+ 1)]T in the temporal span of a subband filter are zero, the noise
IFC, which is assumed to be defined at all times and frequencies,
can be updated based on the input signal. Since we do not apply the
binary mask directly to the noisy signal, but only to update the noise
IFC, we can set the threshold δ to values that are smaller than 0 dB
to increase the robustness and to prevent the inclusion of speech bins
in the IFC estimate.

4. EVALUATION

4.1. Evaluation Settings

To evaluate NR based on subband filtering, we chose a uniformly
modulated DFT filter-bank system [9] with a frame length and DFT
size of K=512 and a down-sampling factor of R=128, i.e. 75%
frame overlap, at a sampling rate of 16 kHz. We use square-root-
Hann windows for the analysis and synthesis filter-bank system to
provide perfect signal reconstruction. The length of the subband
filters is set to L=10, and compared to a conventional frequency-
domain Wiener filter (i.e. L=1). To estimate the noise power in both
cases, we use the approach presented in [10]

φY (k,m) = αY φY (k,m− 1) + (1− αY )|Y (k,m)|2 (15)

φ̂V (k,m) = min{φ̂V (k,m− 1), φY (k,m)}(1 + ε), (16)

and set αY = 0.85 and chose ε to induce a maximum power in-
crease of 4 dB/s. The spectral gains of the frequency-domain Wiener
filter (L=1) are calculated based on the a priori SNR as estimated
by the decision-directed approach [1] with a smoothing parameter
of αDD = 0.94. The first noise IFC estimator (Const.) is based
on a real-valued and constant vector following (13). The smoothed
a posteriori SNR [1] is used to calculate the binary mask in case
of the second IFC estimator (Bin. Mask) presented in Section 3.3.
The threshold δ is set to 0dB. In both cases the speech IFC is then
calculated by (12). Furthermore, we use a first order recursion
ΦY (k,m) = λΦY (k,m− 1) + y(k,m)yH(k,m) and the matrix
inversion lemma [11] to derive a robust estimator for the inverse of
the covariance matrix of the noisy speech signal

k(k,m) =
Φ−1

Y (k,m− 1)y(k,m)

λ+ yH(k,m)Φ−1
Y (k,m− 1)y(k,m)

(17)

Φ−1
Y (k,m) =λ−1Φ−1

Y (k,m− 1)

− k(k,m)yH(k,m)Φ−1
Y (k,m− 1) (18)
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Fig. 2. From top to bottom: Spectrogram of the clean speech sig-
nal; MSE of the estimated speech IFC in case of a constant noise
IFC; MSE of the estimated speech IFC based on the binary mask
approach.

as known, e.g., from the RLS algorithm [12].
As a general observation, we find that the processed signals us-

ing the subband filters sound slightly reverberant when compared to
the traditional Wiener Filter (L=1). In informal listening tests, this
did not lead to a degradation of the perceived signal quality. On
the contrary: the speech seems to be more present in these signals.
To evaluate the NR performance we calculate SNR improvements
(∆SNR) and the Log-Likelihood Ratio (LLR) [13] as a distance to
the clean speech signal. Note that this reverberation effect might bias
the objective measures.

4.2. IFC Estimation

To compare the performance of the proposed IFC estimators in terms
of their accuracy, we calculate the mean square error (MSE)

MSE(k,m) =
1

L
‖γX(k,m)− γ̂X(k,m)‖2. (19)

Figure 2 shows the MSE at all time-frequency points for both IFC
estimators when applied to a noisy signal (WGN, 0dB). To calculate
the reference speech IFC γX(k,m), we estimate the expectations
via first order recursive smoothing of the clean speech DFT coeffi-
cients. As a reference, the first plot in Fig. 2 shows the spectrogram
of the clean speech signal. We observe in both cases that the MSE is
small during speech activity, especially at voiced sounds. However,
the binary mask based approach achieves much smaller MSEs for
unvoiced sounds and during speech pauses.

4.3. NR Performance

Based on the discussion in Section 2.2 and preliminary experimen-
tal results we found the MVDR filter to be more robust than the
subband Wiener filter. Only if all quantities, especially the speech
power φX(k,m), are perfectly known, the Wiener filter eliminates
almost all of the noise. Therefore, we focus on the use of the MVDR
filter and compare it for both IFC estimation approaches to a con-
ventional frequency-domain Wiener filter (L=1). We designed the
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Fig. 3. Simulation results for varying segmental input SNRs and two
noise types, white Gaussian noise (WGN) and babble noise. The
figures show the SNR improvement and the LLR values for the con-
ventional Wiener filter (L=1) and the subband MVDR filter (L=8)
based on the use of the binary mask (Bin. Mask) and of the constant
noise IFC (const.) estimators.
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NR algorithms such that they achieve the same noise reduction of
approximately 20 dB for WGN at an input SNR of 0 dB. Figure 3
shows the resulting SNR gains and LLR values for varying segmen-
tal input SNRs and noise types. We see that the MVDR approach
(L=10) performs better than the conventional Wiener filter at high
input SNRs. Only for WGN, the MVDR filter shows a consistent
improvement for all input SNR values. In all cases, both IFC es-
timators show a similar behavior, while the approach based on the
binary mask performs slightly better. This means that the speech is
barely effected by the larger MSEs of a constant noise IFC as shown
in Fig. 2. The noise reduction itself is mainly achieved by the esti-
mate of the noise power. However, both filtering approaches, i.e. the
MVDR filter (L=10) and the Wiener filter (L=1), suffer from noise
power estimation errors. These errors lead to residual noise artifacts
for babble noise and a decreasing of the signal quality for high input
SNRs in case of the Wiener filter. Figure 4 shows the SNR improve-
ments for varying filter lengths L in case of a constant noise IFC
for WGN and babble noise. We compare the MVDR filter (solid)
and the conventional Wiener filter (dashed) for the input SNRs -10
(black), 0 (blue) and 20 dB (red). Beside the noise power estimate,
the filter length L is chosen as a compromise between noise reduc-
tion (larger values) and speech distortion (smaller values). The best
performance in the context of a blind algorithm is achieved for filter
lengths between 8 and 12.

Informal listening tests show that the MVDR filter leads to less
musical noise and less modulation artifacts of the speech compo-
nents compared to the Wiener filter, especially for input SNRs above
0dB. The filter has a distinct smoothing effect which also leads to
slightly reverberant signals. However, the speech signal seems to be
more present in the processed signals for all input SNRs.

5. RELATION TO PRIOR WORK

The theory of MVDR filters goes back to the Capon filters described
in [14]. In multi-channel speech processing they were used in vari-
ous applications in conjunction with microphone arrays [15, 16, 17]
and further discussed in the context of room acoustics in [18]. A
comprehensive theory of subband filters can be found in [19]. Also,
Kalman filters were used to exploit temporal correlations in sub-
bands in [20, 21] and extended in [22, 23] to the speech and noise
components. However for Kalman filtering, a time-varying transi-
tion matrix needs to be estimated which is difficult when only a noisy
signal is given. Furthermore, such a filtering can be applied in the
frequency-domain as well. [24] uses a cascaded filter-bank system to
implement a subband frequency-domain Wiener filter to increase the
frequency resolution for NR in hearing aids. The authors in [4, 5] as-
sume idealized conditions for the IFC estimation, i.e. they calculate
the unknown IFCs based on the known speech and noise signals.

6. CONCLUSIONS

We introduced and discussed two methods to estimate the inter-
frame correlation which is needed to implement optimal subband
time-domain FIR filters as proposed in [4, 5]. We showed that the
speech enhancement performance can be improved especially for
high input SNRs by exploiting rather simple assumptions concern-
ing the inter-frame correlation of the noise signal. Setting the noise
IFC to a constant vector achieves similar results than using a more
complicated approach based on a binary mask.
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