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ABSTRACT

In this paper we present an improved version of the recently pro-

posed Maximum A-Posteriori (MAP) based noise power spectral

density estimator. An empirical bias compensation and bandwidth

adjustment reduce bias and variance of the noise variance estimates.

The main advantage of the MAP-based postprocessor is its low es-

timation variance. The estimator is employed in the second stage

of a two-stage single-channel speech enhancement system, where

eight different state-of-the-art noise tracking algorithms were tested

in the first stage. While the postprocessor hardly affects the results

in stationary noise scenarios, it becomes the more effective the more

nonstationary the noise is. The proposed postprocessor was able to

improve all systems in babble noise w.r.t. the perceptual evaluation

of speech quality performance.

Index Terms— Noise power estimation, Maximum a posteriori

estimation, Speech enhancement

1. INTRODUCTION

The noise power spectral density (PSD) estimation algorithm is a

key component for many speech processing tasks, such as speech

enhancement and automatic speech recognition. Many very sophis-

ticated algorithms have been proposed in the past, and accurate noise

tracking remains to be an important and challenging research topic

to date [1–9]. Particularly difficult is the tracking of nonstationary

noise from a single-channel noisy speech input, as most noise track-

ing algorithms assume that noise is ”more stationary” than speech

and that time-frequency bins can be found, where only noise is

present. However, when the distortion is highly nonstationary, the

first assumption begins to break down. Further, it is not sufficient to

update the noise PSD estimates in speech absence periods only.

Recently, algorithms have been proposed that try to overcome

these limitations. For example, the transient noise reduction al-

gorithm proposed in [10] that relies on non-local filtering, allows

for the reduction of repetitive highly nonstationary noise. In [11]

we have proposed a MAP-based (”MAP-B”) estimator which can

update its noise estimate even if speech is dominant in the time-

frequency bin under consideration. The estimator relied on approx-

imating the posterior of the noise variance in the presence of an ob-

servation of the noise variance, which is ”distorted” by speech with

known power, by a conjugate prior with the same mode as the true

posterior. This mode could be efficiently computed and served as
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noise variance estimate. To have an estimate of the speech power

available, the MAP estimator was used as a postprocessor to a first

speech enhancement stage (SES).

A later performance analysis revealed that the MAP-B noise

tracker was strikingly insensitive to zero mean estimation errors of

the input speech power. However it was also observed that the es-

timator was not bias-free and performance degraded for large input

signal-to-noise (SNR) ratios [12]. These shortcomings, however, can

be overcome by an optimization, as is shown in this contribution.

Recently, an extensive performance evaluation of a total of eight

state-of-the-art noise tracking algorithms under various adverse

acoustic environments has been conducted [13]. In this evaluation

not only the mean of a spectral distance but also the variance of the

estimators has been assessed. The latter is related to undesirable

fluctuations, known as musical tones. In this contribution we extend

this evaluation and investigate whether the optimized MAP-B noise

tracker is able to improve upon the result of the other eight noise

trackers in the first SES. Indeed the results show that MAP-B re-

duces the variance of the noise estimates for all noise trackers. This

leads to improved speech quality of the speech enhancement system,

as measured by the perceptual evaluation of speech quality (PESQ)

score, for nonstationary noise environments.

The paper is organized as follows. In the next section we briefly

summarize the MAP-B algorithm and its use in a two-stage speech

enhancement system. Sec. 3 addresses the optimization by an SNR-

dependent bias removal and bandwidth adjustment. In Sec. 4 we

present the experimental setup, followed by the results in Sec. 5.

The paper is finished with the conclusions in Sec. 6.

2. MAP-BASED NOISE VARIANCE ESTIMATION

IN A TWO-STAGE SPEECH ENHANCEMENT SYSTEM

In [11] we have presented a noise PSD estimation algorithm and

its use in a single-channel speech enhancement system. Given the

short-time Fourier transform (STFT) coefficients Ykl = Xkl +Nkl

of the noisy speech, where k and l denote frequency bin and time

frame index, respectively, and where Xkl and Nkl are the STFTs

of speech and noise, the algorithm determines an approximate MAP

estimate of the noise variance σ2
N,kl = E[|Nkl|

2], assuming that an

estimate of the speech power σ2
X,kl = E[|Xkl|

2] is available. To

this end the a-priori probability density function (PDF) pσ2
N,kl

of the

time variant noise power for each frequency bin was modeled by a

scaled inverse chi-square (SICS) distribution

pσ2
N,kl

(σ2; ν0, λ
2
kl) =

(ν0 · λ
2
kl)

ν0/2

Γ(ν0/2)
·
(

σ2
)−

ν0+2

2 · e
−

ν0·λ
2
kl

2σ2 (1)
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with the degrees of freedom ν0 and the scale λ2
kl. (1) is a conjugate

prior for the Gaussian observation PDF pY in the case of absence

of speech. In order to maintain an efficient estimation procedure in

the presence of speech, the posterior pσ2
N

|Y was approximated by a

SICS distribution with the same mode as the exact posterior PDF.

To have an estimate of the speech power available, the MAP

estimator was used as a postprocessor to a first SES. Fig. 1 shows

this two-stage configuration, where the upper part depicts the first

SES [14], while the lower part includes the proposed MAP-B post-

processor. It delivers an improved noise variance estimate ˆ̂σ2
N,kl,

which in the following leads to an improved clean speech STFT es-

timate X̂II
kl . The first stage forwards an estimate σ̂2

X,kl of the speech

PSD and a smoothed version ζ̂kl of the a-priori SNR ξ̂kl to the sec-

ond stage, where

ζ̂kl = αζ · ζ̂k,l−1 + (1− αζ) · ξ̂kl (2)

with αζ = 0.7 being a typical value [1]. Note that the speech ab-

sence probability q̂kl to be used in the gain calculation is not recalcu-
lated in the second stage, which saves some computations. Further

it is important to note that the second stage operates on the same,

undelayed, noisy speech signal Ykl as the first stage. Thus the post-

processor does not incur any additional latency compared to single-

stage speech enhancement system.

Any noise tracking algorithm may be used in the first stage.

In [11] we employed the Improved Minimal Controlled Recursive

Averaging algorithm (IMCRA) [4], while in [12] a simplified ver-

sion of the Minimum Statistics (MS) approach was used [2].

The quality analysis carried out in [12] revealed that the MAP-B

postprocessor delivers noise variance estimates with a positive bias

(i.e., the variance is overestimated), which grows with increasing

SNR. Further, it was observed that the improvements obtained by

MAP-B diminished with increasing input SNR. On the other hand,

the quality analysis also revealed the excellent immunity of the al-

gorithm against (zero mean) estimation errors in the input speech

power σ̂2
X,kl. The latter finding could hint to a potentially good per-

formance in a nonstationary noise environment, where speech power

estimation is particularly difficult. This insensitivity to speech power

estimation errors could then be beneficial for the reduction of musi-

cal tones. However, first the mentioned shortcomings needed to be

removed. The next section shows how this can be achieved.
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Fig. 1. Two-stage single-channel speech enhancement system

3. OPTIMIZEDMAP-BASED

NOISE POWER SPECTRAL DENSITY TRACKER

The quality analysis had shown that the MAP-B postprocessor of

[11] delivers estimates with a positive bias, that grows with increas-

ing SNR. It is therefore proposed to reduce the MAP-B estimate as

a function of the SNR:

ˆ̂σ2
N,kl = (1− βkl(SNRkl)) · σ̃

2
N,kl (3)

employing the SNR-dependent bias compensation factor βkl(SNRkl).
Here, σ̃2

N,kl denotes the initial, biased MAP-B noise variance esti-

mate. As an estimate of the SNR the smoothed a-priori SNR ζ̂kl, see
(2), can be employed. The experiments revealed that the following

rule led to a simple, yet effective bias reduction

βkl(ζ̂kl) = βmax ·

(

arctan(ζ̂kl)

π
+

1

2

)

, (4)

if βkl(ζ̂kl) replaces βkl(SNRkl) in (3). Here, βmax is a bias com-

pensation factor, which is set to βmax = 0.01, and ζ̂kl has to be

given in dB.

The MAP-B postprocessor has a single tunable parameter, the

degrees of freedom ν0 of the SICS distribution (1), which in [11]

was chosen to some constant value. The choice of ν0 determines

the weight of the a-priori information relative to the current observa-

tion. The larger ν0 the narrower is the a-priori distribution and the

more weight is given to the a-priori knowledge in comparison to the

current observation. In other words, the parameter ν0 controls the

bandwidth of the MAP-B noise tracker.

The observation made in [11], that the performance degraded

with increasing input SNR, seems to indicate that the bandwidth

of the noise tracker should be reduced for large SNR. This can be

achieved by using a time variant parameter νkl:

νkl(ζ̂kl) = ν0 +
∆ν

π
· arctan

(

ζ̂kl
)

, (5)

with a constant degrees of freedom ν0 = 40 and an adjustment range

∆ν = 10. This is reminiscent to many other algorithms, which halt

the noise PSD estimation in the presence of large input SNR.

4. EXPERIMENTAL SETUP

In this section the robustness of the MAP-B postprocessor in adverse

environments is examined by providing a variety of different nonsta-

tionary noises. We follow the evaluation setup introduced in [13] and

consider eight noise PSD estimators, which are the subspace noise

tracking (SNT) algorithm [6], two minimum mean-squared error

(MMSE) based approaches, i.e. MMSE-Hendriks [9] and MMSE-

Yu [7], four minima controlled recursive averaging (MCRA) based

algorithms, i.e. the original MCRA algorithm [3], the IMCRA al-

gorithm [4] as well as two other methods belonging to this category,

such as EMCRA [5] and MCRA-MAP [8], and finally another state-

of-the-art approach, i.e. the MS algorithm [2]. In the experiments we

intend to show how much the MAP-B postprocessor can be helpful

in improving the noise PSD tracking performance of the aforemen-

tioned algorithms, and subsequently how much effective it is in in-

creasing the quality of the estimated speech derived by the first SES

introduced in section 2. For a performance analysis of the MAP-

B estimator without the optimizations of section 3 we refer to [11],

where IMCRA was used in the first SES.

In our experiments the sampling frequency of all signals is

8 kHz. Clean speech signals are taken from the TIMIT database

[15]. By concatenating sentences and removing the beginning and

trailing silences, two clean speech signals are generated for our

experiments; one for female speech and one for male speech. Each
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clean speech signal has a length of 2 minutes and includes speech

of 8 different speakers spoken in English. At the beginning of each

clean speech data 0.1 seconds silence is included. Clean speech

is degraded by different noise types. Here we present the results

for three noise types. We select babble noise (produced by a large

crowd) from NOISEX-92 [16] as a representative of a highly non-

stationary noise, and car noise (inside a car during acceleration and

deceleration) from SOUND-IDEAS database [17] representing only

mildly nonstationary noise. Moreover, we consider a modulated

white Gaussian noise (WGN) which is called ”sinusoidal WGN”

and which is obtained through modulating WGN by the following

function

g(n) = 1 + sin

(

2πn

fs
. fmod

)

, (6)

where n is the sample index, fs the sampling frequency and fmod

indicates the varying modulation frequency, which linearly increases

in 30 seconds from 0 Hz to 0.25 Hz. In the experiments, for each type

of noises, we varied the input overall SNR from −5 dB to 20 dB in

steps of 5 dB.
The reference noise PSD as employed in [13] can be derived by a

recursive temporal smoothing of noise periodograms with a smooth-

ing parameter α = 0.9. However, the recursive smoothing by the

IIR-filter incurs a delay of α
1−α

samples, which can be advantageous

for a noise tracker, which happens to have the same delay. Thus, for

our experiments we employed a delayless filter realized by the Mat-

lab function filtfilt(1-α, [1 -α], |Nkl|
2), which performs the smooth-

ing over all frames by processing the original noise power |Nkl|
2

for each frequency bin in both the forward and reverse directions to

obtain an undelayed reference noise PSD σ2
N,kl.

Two performance measures LogErrmean and LogErrvar are taken

into account to examine the performance of noise PSD trackers [13].

LogErrmean is defined as the mean of the spectral distance between

the reference noise PSD σ2
N,kl and the estimated noise PSD, either

from the first stage (σ̂2
N,kl) or from the second (ˆ̂σ2

N,kl). LogErrvar
computes the variance of the estimation error and it is more related

to undesirable fluctuations in the estimated noise PSD. The first 3

seconds of the input signals are used for the initialization of the al-

gorithms and are excluded from the computation of the performance

measures. Moreover, the first 5 frequency bins as well as the 5 bins

below the Nyquist frequency are excluded as well in order to reduce

the influence of DC-removal and anti-aliasing filter.

All noise power estimators were implemented in a DFT-based

spectral analysis system using overlapping square-root periodic

Hann windows. The window length as well as the DFT length is 256

samples, and the amount of the overlap between frames is considered

separately based on recommendations reported by the authors of the

algorithms. The frame overlap factor for MS, MMSE-Yu, MMSE-

Hendriks, SNT algorithms is set to 50%, and for MCRA, IMCRA,

EMCRA, MCRA-MAP algorithms to 75%. Having different frame

overlap factors results in producing different numbers of frames.

Thus, to have the same number of frames for the evaluation of noise

PSD estimators in terms of LogErrmean and LogErrvar we sub-sample

the reference and estimated noise PSD for those algorithms, which

use more than 50% frame overlap.

The overall performance measures are defined as follows:

∆LogErrmean = −(LogErr(II)mean − LogErr
(I)
mean), (7)

∆LogErrvar = −(LogErr(II)var − LogErr
(I)
var ), (8)

∆PESQ = PESQ
(II) − PESQ

(I), (9)

where LogErr(I)mean and LogErr(I)var are computed from the estimated
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Fig. 2. Performance of the noise PSD estimators in the first stage

before applying of MAP-B estimator for various noise types in terms

of LogErr(I)mean: (a) babble, (b) sinusoidal WGN, (c) car noise.

noise PSD σ̂2
N,kl in the first stage. Similarly, LogErr(II)mean and

LogErr(II)var are computed from the estimated noise PSD ˆ̂σ2
N,kl

of the second stage. PESQ(I) and PESQ(II) are computed from the

enhanced speech signal of the first and second stage, respectively.

∆LogErrmean and ∆LogErrvar show the amount of attenuation

of the noise estimation error provided by the MAP-B postprocessor,

and∆PESQ expresses how much the MAP-B postprocessor is effec-

tive in improving the speech quality. For the performance measures

in (7)-(9), the larger values show better performance.

5. EXPERIMENTAL RESULTS

The performance of the noise PSD estimators in the first stage be-

fore applying of MAP-B postprocessor is shown for various noise

types in terms of LogErr(I)mean in Fig. 2. One can see that the consid-

ered noise trackers perform quite differently. While the babble noise

seems to be the most difficult noise type to track, the most easiest is

the car noise. Furthermore the SNT andMMSE-Hendriks estimators

seem to reach the best averaged performance.

In Fig. 3 we show the effect of the MAP-B postprocessor on

the accuracy of the noise power estimation with respect to the per-

formance measures ∆LogErrmean and ∆LogErrvar. Furthermore,

the impact of the MAP-B postprocessor on the improvement of the

speech quality as measured by∆PESQ is presented in Fig. 4.

Looking at the results for∆LogErrvar in Fig. 3, it can be seen that

for almost all tested environments the MAP-B postprocessor was

able to reduce the estimator’s variance, in particular for the more

nonstationary noise types, i.e. babble noise and sinusoidal WGN.

In terms of reduction of the mean estimation error ∆LogErrmean
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the proposed approach performs quite well for babble noise, which

is the most difficult to track. As a consequence of the better noise

tracking, a consistent quality improvement of the enhanced speech

signals was observed for all noise PSD estimators, see Fig. 4(a).

According to the results for LogErr(I)mean from Fig.2(b) SNT and

both MMSE-based approaches are able to track the sinusoidal WGN

noise type better than MS and the MCRA-based approaches. Here,
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(a) babble noise, (b) sinusoidal WGN, (c) car noise.

the MAP-B postprocessor could improve the noise tracking in terms

of ∆LogErrmean only for the last mentioned approaches. However,

as one can see in Fig. 4(b), the quality of enhanced signals by using

the SNT and both MMSE-based approaches was barely affected.

As can be seen from the results of Fig. 2(c), the car noise type

can be tracked by all evaluated noise trackers quite well, and the

MAP-B postprocessor can not improve on that except of noise PSD

estimates of MMSE-Yu tracker, see Fig. 3(c). Notwithstanding, be-

cause of the attenuation of the variance of the noise PSD estimation,

an average slight improvement of the PESQ measure was noticed,

see Fig. 4(c).

6. CONCLUSIONS AND RELATION TO PRIOR WORK

The extensive performance analysis described in this contribution

showed that a two-stage speech enhancement system that includes

an optimized version of the MAP-B noise PSD estimator in the sec-

ond stage is able to reduce the variance of all eight state-of-the-

art noise estimation algorithms and consequently led to improved

speech quality for nonstationary noise environments. For more sta-

tionary noise the first stage performs already well and the MAP-B

estimator is only able to reduce the variance of the noise PSD esti-

mate. In this case a second stage is not necessary. The second stage

can be realized very efficiently adding no latency to the system.

The MAP-B estimator was proposed in [11], and the optimiza-

tions of the MAP-B noise estimator used here are based on an ana-

lysis described in [12]. These approaches lead to a reduced bias

and improved performance in high SNR. The experimental frame-

work under which the noise trackers were compared has been taken

from [13] and was extended to include a speech quality measure.
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