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ABSTRACT

Speech separation has been recently formulated as a classifi-

cation problem. Classification as a form of supervised learn-

ing usually performs well on background noises when parts

of them are seen in the training set. However, the perfor-

mance can be significantly worse when generalizing to com-

pletely unseen noises. In this study, we present a method that

alleviates the generalization issue by attempting to denoise

acoustic features before training and testing. We show that a

standardmultilayer perceptronwith proper regularization per-

forms well on this task. Experimental results indicate that the

resulting separation system performs significantly better in a

variety of unknown noises in low SNR conditions. In a neg-

ative SNR condition, we also show that the proposed system

produces more intelligible speech according to two recently

proposed objective speech intelligibility measures.

Index Terms— Speech separation, feature denoising,

generalization, deep neural networks

1. INTRODUCTION

Single-channel speech separation is a persistent challenge for

decades. A series of recent studies (e.g., [1, 2, 3]) has shown

that speech separation can be effectively formulated as a bi-

nary classification problem, in which the computational goal

is to estimate the ideal binary mask (IBM). The IBM is ideal

in the sense that it is constructed from premixed target and

interference, where 1 indicates that the target energy exceeds

the interference energy by a local signal-to-noise (SNR) crite-

rion (LC) in the corresponding time-frequency (T-F) unit, and

0 otherwise. Specifically,

IBM(t, f) =

{

1, if SNR(t, f) > LC

0, otherwise,

where SNR(t, f) denotes the local SNR (in decibels) within

the T-F unit at time t and frequency f . For separation, one ex-

tracts acoustic features within each T-F unit and train proper

classifiers to decide the target-dominance of the T-F unit.

Classification-based speech separation is a form of super-

vised learning, and thus speech separation can greatly bene-

fit from the modeling power of machine learning techniques.

However, supervised learning models run the general risk of

not generalizing well to mismatched test conditions. This

is also true for classification-based speech separation, which

performs worse in unknown noise conditions unless the clas-

sifiers are trained on large datasets. How to improve general-

ization with limited training data, and how to make the system

performbetter even with large amounts of training data are the

questions that we tackle in this paper.

The generalization issue is mainly caused by mismatched

feature patterns or distributions between training and test sets.

A fundamental cause is that we lack environment-invariant

speech features. To deal with this issue, we propose a data-

driven approach that learns a (nonlinear) mapping of noisy

features to a more stable and coherent feature space. Specifi-

cally, we design a neural network in which the input is noisy

features and the output is the corresponding clean features.

This neural network is used to transform raw noisy training

data into a new set of training data, which is then combined

with raw features for classifier training. In testing, the same

network is used to transform the test data. This way the fea-

ture distribution of the test data is expected to more likely

match that of the training data. Importantly, we have observed

that such a feature denoising task is less demanding in terms

of generalization, which consequently boosts the performance

for the subsequent classification task.

Our work is inspired by the denoising autoencoder (DA)

work [4]. DA tries to extract more invariant features by

adding a small amount of noise (e.g., salt-and-pepper noise)

to raw data. The model is trained to reconstruct the raw data

using the noisy data, and the hidden layer activations are

used as learned features. Our model differs from DA in that

(1) we deal with real noises of interest rather than artificial

noises; (2) our model functions as a feature denoiser rather

than an autoencoder as we are interested in network outputs

rather than hidden activations; and (3) the input and output

need not to be the same kind of feature and may have dif-

ferent dimensions. Methods exist that map noisy features
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Fig. 1. An example of feature denoising for an IEEE utterance

mixed with an unseen factory noise at 0 dB. Top panel: noisy

MFCC features in a filter channel. Middle panel: correspond-

ing denoised MFCC features. Bottom panel: corresponding

clean MFCC features. The black solid line indicates which

T-F units are target-dominant (i.e. with a label of 1).

to more robust ones. Representative methods include mean

variance normalization plus ARMA filtering (MVA) [5], his-

togram equalization [6], and the SPLICE algorithm [7]. The

differences between previous works and our work lie in the

underlying task, the denoising method, and the type of fea-

ture to be denoised (i.e., unit-level features v.s. frame-level

features).

This paper is organized as follows. We briefly introduce

the framework of classification-based speech separation in the

next section. Section 3 discusses the proposed feature denois-

ing method, followed by experimental results in Section 4.

Section 5 concludes this paper.

2. CLASSIFICATION-BASED SPEECH SEPARATION

The computational goal of classification-based speech separa-

tion is to estimate the IBM, which can substantially improve

speech intelligibility for both normal-hearing and hearing-

impaired listeners (see e.g. [8]). We use a 64 channel gam-

matone filterbank as our analysis frontend. Specifically, the

noisy mixtures are passed to the gammatone filterbank with

center frequencies ranging from 50 to 8000 Hz. We form a

T-F representation called cochleagram [9] by windowing (we

use a 20-ms window with a 10-ms overlapping) the output

from each filter channel. We extract acoustic features and

train subband classifiers for individual filter channels, with

the IBM providing training labels.

Since a binary decision needs to be made for each T-F

unit, we extract acoustic features from the subband signal

slice underlying each T-F unit. These unit-level features are

more suitable than traditional frame-level ones for the separa-

tion task [10]. In [10], we also proposed to use a combination

of amplitude modulation spectrogram (AMS), relative spec-

tral transform and perceptual linear prediction (RASTA-PLP)

, and mel-frequency cepstral coefficients (MFCC) as the fea-

ture vector for each T-F unit. As for subband classifier, in our

recent work we found that pretrained deep neural networks

(DNN) tend to outperform previously used Gaussian mixture

models (GMM) and support vector machines (SVM) [11].

3. FEATURE DENOISING

3.1. Motivation

As described above, we aim to denoise unit-level noisy fea-

tures into corresponding clean features. We start our discus-

sion with a motivating example shown in Fig. 1. The top panel

of Fig. 1 shows 31-D MFCC features in a filter channel, ex-

tracted from an IEEE utterance [12] mixed with an unseen

factory noise at 0 dB. We can see that the raw MFCC fea-

tures are very noisy, and some discriminative information is

buried in the noise. Nevertheless, if we superimpose the IBM

(of this channel) on top of the noisy features, we can see that

the target-dominant T-F units tend to have more prominent

acoustic patterns. This is illustrated in Fig. 1, where the black

solid line indicates target-dominant T-F units. This observa-

tion motivates us to design an algorithm that takes a noisy

feature as input and attempts to reconstruct its stable struc-

ture. The output from this algorithm is expected to be more

coherent than the raw feature, thereby improving the general-

ization performance for subsequent classification.

To this end, we design a multilayer perceptron (MLP),

where the input is the noisy feature and the output is the clean

feature. As we can see from the middle panel of Fig. 1, the

denoised features are closer to the clean ones, and are much

more coherent than the noisy ones. Interestingly, for features

that are completely dominated by noise, the network tends

not to output meaningful structure. This is consistent with

an intuitive assumption that unstructured data are difficult to

map to structured data, unless there is overfitting. Finally, we

point out that the feature denoiser seems to generalize well.

The denoiser used in this example is only trained on a speech-

shaped noise, and the factory noise is unseen to the denoiser.

The denoising network is used to preprocess all the features

before training and testing in classification-based separation.

3.2. Model design

Two design choices can impact the feature denoising perfor-

mance. First, we found that using a window of noisy features
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as input to denoise the center noisy feature is much more ef-

fective than using the single noisy feature alone. Such effec-

tiveness comes from the temporal correlations in speech sig-

nal. Second, we found that it is important to properly regular-

ize the denoising network. We achieve the best performance

when using a sparsity-inducing regularization on the hidden

layer. Specifically, we regularize the mean hidden activations

to be a small positive number, such that most of the hidden

activations are close to 0 (see e.g. [13]). In this study, we use

Kullback-Leibler (KL) divergence to achieve this goal:

KL(ρ̂||ρ) =
∑

k

ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ

1− ρ̂
, (1)

where k indexes hidden units, ρ is the expected mean activa-

tion level which we set to 0.01, and ρ̂ is the actual averaged

hidden activation level of the network. The objective function

of the denoising network (for one sample) then becomes:

L(y,x;W) =
1

2
‖y − f (x;W)‖2

2
+ βKL(ρ̂||ρ), (2)

where x and y denote the noisy and corresponding clean fea-

ture, respectively. f(·) is the nonlinear mapping defined by

the denoising network, whose parameters are collectively de-

noted by W. When using multiple hidden layers, we only

regularize the last hidden layer. Note that when the hidden

layer is set to be overcomplete (i.e., more hidden than in-

put units), the network can be viewed as a nonlinear version

of sparse coding. Therefore, it is reasonable to project that

the effectiveness of using sparse regularization is due to the

observation that clean speech is amenable to overcomplete

sparse decomposition [14].

4. EXPERIMENTAL RESULTS

Before describing more extensive experiments, we perform

a preliminary evaluation to verify the utility of feature de-

noising. The denoiser is trained on 100 IEEE utterances

mixed with a speech-shaped noise at 0 dB. The denoiser uses

only one hidden layer. As mentioned in Sec. 2, we use two

hidden layer deep neural networks pretrained by restricted

Boltzmann machines (RBM) as the subband classifiers for

classification-based separation. These DNNs are trained on

50 IEEE utterances mixed with 12 nonspeech noises at 0 dB.

The test mixtures are created by mixing 20 new utterances

with 10 unseen noises, also at 0 dB. We choose unit-level

MFCC as the raw feature, which does not generalize well

to unseen noises [10]. We consistently found that the best

performance is achieved when concatenating the denoised

feature with the raw feature. Therefore we only present

denoising results using this concatenated feature.

We document results using classification accuracy, over-

all HIT−FA, voiced-interval HIT−FA, and unvoiced-interval

HIT−FA. The HIT−FA criterion is suggested by Kim et al.
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Fig. 2. Masks obtained on an IEEE utterance mixed with an

unseen speech-shaped noise at 0 dB.

Table 1. Comparisons by using MFCC as raw feature

Feature Accuracy
Overall Voiced Unvoiced

HIT−FA HIT−FA HIT−FA

RAW 82.8% 54.9% 57.8% 38.2%

RAW+DNS 85.1% 61.3% 64.1% 46.4%

RAW+DNS+∆ 86.1% 66.9% 67.1% 61.4%

[1], and shown to be well correlated to human speech intel-

ligibility. The HIT rate is the percent of correctly classified

target-dominant T-F units (1’s) in the IBM, and the FA rate

is the percent of wrongly classified interference-dominant T-

F units (0’s). Table 1 shows the performance comparisons

between using raw MFCC features (RAW) and raw features

concatenated with denoised features (RAW+DNS). It is clear

that by making use of denoised features, we can achieve sig-

nificant improvements over 10 unseen noises. The perfor-

mance can be further boosted by using delta features derived

from the denoised features (RAW+DNS+∆). As shown in Ta-

ble 1, overall we achieve about 3.3 percentage improvements

in accuracy and 12 percentage improvements in HIT−FA,

which is quite encouraging given that the denoiser is only

trained on one noise. We have also experimented with deep

denoising network that is pretrained by RBMs. However, we

only achieve about 0.5% HIT−FA improvement while the
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Fig. 3. Overall HIT−FA comparisons when using a comple-

mentary feature set as raw features.

training becomes significantly slower. Hence, we use one hid-

den layer denoising network (with random initializations) in

the rest of the experiments.

Next, we show that the denoising network also works for

more robust features. We choose the complementary feature

set, AMS+RASTA-PLP+MFCC, as the raw features [10], and

test 20 utterances mixed with three unseen challenging noises

(speech-shaped, factory, and babble noise) at 0 dB. The de-

noiser and subband DNNs are trained on 25 noises, exclud-

ing the three test noises. As can be seen in Fig. 3, we still

achieve about 7 percentage HIT−FA improvements averaged

over 3 noises. Fig. 2 shows estimated masks on a test utter-

ance mixed with the unseen speech-shaped noise.

We now present results in the -5 dB input SNR condi-

tion. The test mixtures are obtained by mixing 10 IEEE ut-

terances with 12 unseen broadband noises1 at -5 dB. Due to

the difficulty of this task, both denoiser and subband DNNs

are trained on 100 nonspeech noises [15], and the comple-

mentary feature set is used. Note that we set LC = −10 dB.
We point out that in the -5 dB SNR condition, human speech

intelligibility is no longer perfect (see e.g., [1]). Therefore,

aside from HIT−FA, we also use a recently proposed short-

time objective intelligibility measure (STOI) [16] as an eval-

uation metric. STOI has been shown to be highly correlated

with human speech intelligibility scores.

Table 2 shows the comparisons in terms of overall HIT−FA

and STOI. The average STOI of the mixtures and IBM sep-

arated speech is 0.61 and 0.81, respectively. Since DNNs

can also produce a posterior probability of target-dominance

for each T-F unit, we evaluate STOI using both estimated

1We use a speech-shaped noise and 11 noises from the NOISEX corpus:

white, pink, HF channel, babble, factory 1, factory 2, jet 1, jet 2, destroyer

engine, destroyer operations, and F-16 noise.

Table 2. Objective intelligibility measure comparisons on -5

dB mixtures. Average STOI of mixtures: 0.61

System/Feature
Overall STOI STOI

HIT−FA (binary) (posterior)

Speech Enhancement [17] n/a n/a 0.59

RAW 52% 0.64 0.65

RAW+DNS+∆ 60% 0.67 0.70

IBM n/a 0.81 n/a

binary mask and posterior (soft) mask. As can be seen, using

denoised features significantly outperforms raw features for

both HIT−FA and STOI. The best STOI result is obtained by

the estimated posterior masks using RAW+DNS+∆ features.

We also compare with a recently proposed speech en-

hancement algorithm [17]. As shown in the table, this algo-

rithm produces lower STOI scores than the unprocessed mix-

tures.

5. CONCLUDING REMARKS

We have proposed a denoising neural network where the in-

put is unit-level noisy features and output is the correspond-

ing clean features. The denoising network is used to pre-

process features before training and testing in classification-

based speech separation systems. We have shown that us-

ing denoised features significantly boosts performance in un-

known noisy conditions, in terms of classification accuracy

and the two objective intelligibility measures of HIT−FA and

STOI.

One may consider using the denoising network to directly

denoise frame-level features and convert the denoised spec-

tra/cepstra to time domain signals. However, we have not

obtained good results using this approach, perhaps because

frame-level features do not generalize as well as unit-level

ones [10].

We will consider using other types of neural network to

denoise frame-level features. The results presented in this

study are still preliminary. For example, although we have

shown that the RBM pretrained deep denoiser does not signif-

icantly outperform the randomly initialized shallow denoiser,

we do not rule out this possibility if other pretraining methods

are used. For example, denoising autoencoder seems to be a

more natural choice than RBM.
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