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ABSTRACT

This paper proposes a generalized maximum a posteriori spectral
amplitude (GMAPA) algorithm to spectral restoration for speech
enhancement. The proposed GMAPA algorithm dynamically ad-
justs the scale of prior information to calculate the gain function
for spectral restoration. In higher signal-to-noise ratio (SNR) con-
ditions, GMAPA adopts a smaller scale to prevent over-
compensations that may result in speech distortions. On the other
hand, in lower SNR conditions, GMAPA uses a larger scale to
enable the gain function to more effectively remove noise compo-
nents from noisy speech. We also develop a mapping function to
optimally determine the prior information scale according to the
SNR of speech utterances. Two standardized speech databases,
Aurora-4 and Aurora-2, are used to conduct objective and recogni-
tion evaluations, respectively, to test the proposed GMAPA algo-
rithm. For comparison, three conventional spectral restoration al-
gorithms are also evaluated; they are minimum mean-square error
spectral estimator (MMSE), maximum likelihood spectral ampli-
tude estimator (MLSA), and maximum a posteriori spectral ampli-
tude estimator (MAPA). The experimental results first confirm that
GMAPA provides better objective evaluation scores than MMSE,
MLSA, and MAPA in lower SNR conditions, with comparable
scores to MLSA in higher SNR conditions. Moreover, our recogni-
tion results indicate that GMAPA outperforms the three conven-
tional algorithms consistently over different testing conditions.

Index Terms—Speech enhancement, spectral restoration,
MMSE, MAPA, MLSA, Generalized MAPA

1. INTRODUCTION

Speech enhancement aims to reduce background noise from
noisy speech signals while preventing possible speech distor-
tions. In speech processing systems, e.g., speech recognition,
speech coder, and voice over IP, speech enhancement schemes
are often used as a pre-processer to enhance the speech quality.
Generally, speech enhancement algorithms can be divided into
three categories, namely filtering, spectral restoration, and
speech model techniques [1]. First for the filtering techniques,
the goal is to design a filter or transformation that attenuates
noise components to generate clean speech. Notable filtering
techniques include time- and frequency-domain Wiener filters [,
2, 3], and parametric Wiener filter [1]. For spectral restoration, a
gain function is estimated to perform noise reductions in the fre-
quency domain to obtain clean speech spectrums from the noisy
speech spectrums. Successful examples include minimum mean
square error spectral estimator (MMSE) [2, 4, 5, 6], minimum
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mean-square error log-spectral amplitude estimator (LSA) [7, 8, 9],
maximum a posteriori spectral amplitude estimator (MAPA) [1,10,
11] and maximum likelihood spectral amplitude estimator (MLSA)
[1, 12, 13]. Finally, speech model techniques combine human spee-
ch production models and speech reduction functions to remove
noise components from noisy speech signals. Well-known speech
models used for speech enhancement include the harmonic model
[1, 14, 15, 16], the linear prediction (LP) model [1, 17, 18], and the
hidden Markov model (HMM) [1, 19, 20, 21].

In this study, we focus our discussion on the spectral restora-
tion algorithms for speech enhancement. Although many conven-
tional spectral restoration techniques have shown effectiveness on
noise reduction, they may have limited capability to achieve high
performance for both high and low signal-to-noise ratio (SNR)
conditions. For example, MAPA provides good noise reduction
performance in low SNR conditions but possibly generate distor-
tions due to over-compensations in high SNR conditions. On the
other hand, MLSA maintains high quality in clean conditions along
with limited noise attenuation capability in low SNR conditions. In
this study, we propose a generalized maximum a posteriori spectral
amplitude (GMAPA) estimator to overcome the limitation of the
conventional techniques. GMAPA incorporates an adjustable scale
of prior information to calculate the gain function for spectral res-
toration. In higher SNR conditions, GMAPA uses a smaller scale of
prior information to maintain the quality of speech data; on the
other hand in lower SNR conditions, GMAPA adopts a larger scale
of prior information to enable the gain function to more effectively
remove noise components. We also design a mapping function to
determine the optimal scale value of the prior information accord-
ing to the SNR of the speech utterance to be enhanced.

We conducted objective and recognition evaluations on Au-
rora-4 [22] and Aurora-2 [23, 24] speech databases, respectively,
to test the proposed GMAPA algorithm. For objective evaluations,
we tested speech distortion index (SDI) values [1, 25] and percep-
tual estimation of speech quality (PESQ) [26, 27, 28] using the
speech data from Aurora-4. For recognition evaluations, we trained
acoustic models and tested recognition on the Aurora-2 task. Our
experimental results first indicate that GMAPA gives better objec-
tive evaluation results comparing to MMSE, MLSA, and MAPA in
lower SNR conditions (under 15 dB), with comparable to MLSA in
higher SNR conditions (over 20 dB). Moreover, the recognition
evaluation results show that GMAPA outperforms the three algo-
rithms consistently over different testing conditions.

2. SPECTRAL RESTORATION TECHNIQUES

In this section, we review the overall spectral restoration process
and two notable algorithms, namely MLSA and MAPA.
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2.1 Spectral Restoration Process

In the time domain, we consider a noisy speech signal, y[n], as a
sum of a clean speech, s[n], and a noise signal, v[n], as

y[n] = s[n] +v[n], M

where 7 denotes the time index. In the frequency domain, the noisy
speech spectrum of the m-th frame, Y[m, [], can be expressed as

Y[m, 1] =Sm 1] +V[mlI,0<l<L-1, 2)

where / is the frequency bin correspond to the frequency w,;, where
2Tl

w = 1=0,1,..,L-1,m=1,..,M; S[m,1] and V[m,[] are
speech and noise spectrums, respectively.

Fig. 1 shows the overall spectral restoration process, which
can be divided into noise tracking and gain estimation stages. The
noise tracking stage computes noise power from the noisy speech,
Y[m,1], to obtain a priori and a posteriori SNR statistics [29, 30].
Then the gain estimation stage calculates a gain function, G[m, ],
based on the computed a priori and a posteriori SNR statistics, to
obtain enhanced speech, S[m,[], by filtering Y[m,[] through
G[m,1]. In the following discussion, we denote Y[m, 1], S[m,1],
V[m,1], and G[m, ], respectively, as Y, S, V, and G, for simplicity.

y[n] Y[m, 1] Sim, 1] 3[n]
=P FFT > | [FFT [
G[m,1]
Noise Gain
Tracking Estimator

Fig. 1. Block diagram of a speech enhancement system.

By decomposing noisy and clean speech spectrums, Y and S
in (2), into amplitude and phase parts, we have

Y = Ykexp(jﬁyk) , 3)

S = Syexp(jbs, ), (4)
where ¥, = |Y], S, = |S], Oy, = Y, and O5, = £S. To restore S

from Y, we first estimate the phase of clean speech spectrum by

exp(jfs,) =arg_min | [lexp(65,) = exp (3] s)

exp(i0s,

Then, we have

exp(jbs,) = exp(jby,). (6)
Accordingly, the clean speech spectrum is estimated as
$= §kexp(jeyk). (7)

More details about the phase estimation can be found in [1, 4].
2.2 MLSA and MAPA Algorithms

This section introduces two well-known gain estimators—MLSA
and MAPA. The calculations of noise power and gain function are
derived based on two assumptions: a) speech and noise signals are
independent, and noise signal is additive; b) both speech and noise
signals are random processes. Two statistics for spectral restoration,
namely a priori SNR (&) and a posteriori SNR (yy), are defined as

& =02/a? and y, =Y?Z/02 , where 62 =E[|S[m,I]|?] and
o2 = E[|V[m,1]|?]. We denote & and y , respectively, as & and y.

2.2.1 MLSA Algorithm
For MLSA, the spectral amplitude, Sy, is calculated by [1, 12, 13]

Sj = arg max Jursa(Si) (8)
k
where Jy154(Sy) is the MLSA cost function and is defined as

Jursa(Sk) = In{p[Y S, ]} )

By differentiating the MLSA cost function in Eq. (9) with respect
to Sy and equating the result to zero, we can obtain

Y + /Ykz—a,?

(10)
Thus, the MLSA-based gain function, G4, 1S
1+ |(% —o)/V¢ (11)
G =
MLSA 2
2.2.2 MAPA Algorithm
MAPA estimates the spectral amplitude, S, based on [1, 10, 11]
Sy = arg max Jyapa (i) (12)

Jmapa(Sy) is the MAPA cost function and can be expressed as
Juapa(Si) = In{p[Y|S,Ip[Sk]}- (13)

By differentiating the MAPA cost function in Eq. (13) with respect
to Sy and equating the result to zero, we can obtain

5 V

k 2(1+8)

Thus, the MAPA-based gain function, Gy 4p4, can be expressed as

E+VE2+A+E/y
21+ %) '

(1s)

Gyapa =

3. GMAPA ESTIMATOR

In this section, we introduce the proposed GMAPA algorithm and
the mapping function to determine the scale of prior information.

3.1 GMAPA Algorithm

For GMAPA, the spectral amplitude, S, is calculated by
(16)
Jomapa(Sk) is the GMAPA cost function and can be expressed as

Jomara(Si) = In{p[Y|S,] (@[Sk]D“}. 17

By differentiating the GMAPA cost function in Eq. (17) with re-
spect to S and equating the result to zero, we can obtain

o &t V& + Qa—-1)(a+8E/y
L 2(a+ &)

SAk = arg n}zx Jomapa(Sk)-

Yi, (18)
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where S, is the enhanced speech. Thus, GMAPA gain function is

£+ + Qa—1)(a+8i/y (19)
2(a+8) '

Please note that when setting a=1 in Eq. (17), Jepapa(Sk) be-
comes Jyapa(Sk) in Eq. (13). When setting a=0 in Eq. (17),
Jomapa(Sk) becomes Jus4(Sk) in Eq. (9). Table I summarizes
the gain functions of MLSA, MAPA, and GMAPA. The gain func-
tion of the well-known MMSE [1] is also listed in the first row of
Table I for comparison. For MMSE in Table I, § = [¢/(1 + &)]y;
I'(.) is the Gamma function; I,(.) and I; (.) are the modified Bes-
sel function of the zero-order and first-order, respectively.

Gemara =

Table I. Gain functions of different algorithms

3\Vé 5 5 5
MMSE F(E)TEXP (— E) [(1 + 6)10 (E) + 511 (E)]
MLSA 1+VM¥e - od/%e
2
MAPA §HYE+a+y
2(1+8€)
GMAPA §+/E+ Qa-D(a+ iy
2@ +8)

3.2 Determining the Scale of Prior Information

We designed a sigmoid function [31, 32] to optimally determine
the scale a for Ggpapa in Eq. (17) for each utterance by

a= amax (20)

1+ exp[-b(F — )]’

where a,,,, is the maximum value for «; b and ¢ are coefficients of
the sigmoid function; ¥ is the mean of a posteriori SNR for a given
utterance, where 7 = mean[y™,m = 1,2 ... M]. Fig. 2 shows the
designed function that determines the scale factor o based on y. Fig.
2 shows that the mapping function gives a larger a in lower SNR
conditions and a smaller « in higher SNR conditions.

Low 7 o High
Mean of a posteriori SNR (y)

Fig. 2. The mapping function to determine a for each SNR.
4. EXPERIMENT
In this section, we discuss experimental setup and results. Since
this study focuses on comparing different gain function estimators,
we adopted a same noise tracking method, minimum statistics (MS)
[33, 34], throughout the experiments for a fair comparison.

4.1. Experimental Setup

In this study, we performed objective evaluations and recognition
tests for MMSE, MLSA, MAPA, and the proposed GMAPA.

4.1.1. Database
We conducted objective and recognition evaluations on the Auro-
ra-4 [22] and Aurora-2 [23, 24] databases, respectively. For the
objective evaluation, we selected 36 utterances from the Aurora-4
clean training set. Six speakers (three males and three females)
pronounced these utterances. We intentionally selected the utter-
ances in various lengths. With these clean utterances, we artificial-
ly simulated noisy speech utterances, using three noise types—
white Gaussian noise (WGN), Babble, and Train, at seven SNRs—
0 dB, 5 dB, 10 dB, 15 dB, 20 dB, 30 dB, and 40 dB. Accordingly,
we prepared 21 different conditions, each including 36 utterances.
For the recognition test, we used the clean condition training set in
Aurora-2 to prepare a set of acoustic models. This training set con-
tains 8440 utterances recorded in a clean condition. We tested
recognitions using speech data in 60 conditions (10 noise types, at
0- to 20-dB SNR levels with the clean condition) in the Aurora-2
test set. Here, we report the average performance of each SNR
level. In addition, we report an average result (denoted as Avg) for
the average performance over 0-20 dB conditions. For Aurora-2
experiments, Avg is often used to present the overall performance.
For both objective and recognition evaluations, we decided
Opas b and ¢, in Eq. (20) using an additional development set. This
set consisted of noisy data with given SNR levels. For each utter-
ance in the development set, we calculated its mean of a posteriori
SNR, 7, and found the optimal « to this particular utterance. With
the collection of ¥ and « pairs from all the utterances in the devel-
opment set, we can determine @, b and ¢ in Eq. (20). In the
online, we first calculated y for each testing utterance and then
estimated the corresponding o by Eq. (20) to perform GMAPA.

4.1.2. Objective Evaluations
In this paper, we used speech distortion index (SDI) [1, 25] and
perceptual estimation of speech quality (PESQ) [26, 27, 28] as the
objective evaluations. SDI evaluates the distortion of the enhanced
speech signal with respect to the original clean speech signal by
aMnm1)2
sp = ElGn] = $[n]) ], @
E [52 [n]]

where s[n] and §[n] are the clean and enhanced speech signals.

The PESQ evaluation was proposed by the International Tele-
communication Union (ITU) to evaluate the mean opinion score
(MOS) [26, 27, 28]. The PESQ value indicates the quality differ-
ence between the enhanced and clean speech signals. The score
range of PESQ is from 0.5 to 4.5. A higher score implies that the
enhanced speech signal is closer to the clean speech signal.

4.1.3. Recognition Tests

The complex back-end HMM topology was adopted to prepare the
acoustic models [23]. Each digit model was characterized by 16
states, with 20 Gaussian mixtures per state. Silence and short pause
models included three and one states, respectively, both with 36
Gaussian mixtures per state. Mel-frequency cepstral coefficients
(MFECC) were used as speech features. Every feature vector com-
prised 13 static plus their first- and second-order time derivatives.
Word error rate (WER) was used to evaluate the recognition per-
formance. A lower WER indicated a better recognition result.

4.2. Experiment Results
This section presents our experimental results, including a spectro-

gram comparison, SDI and PESQ objective evaluations on Aurora-
4, and the speech recognition results on Aurora-2.

7469



4.2.1. Spectrogram Analysis

A spectrogram shows the spectral representations of a time-varying
signal and is often used to analyze frequency and level properties
of speech signals [35, 36]. Fig. 3 illustrates four spectrograms: (a)
noisy speech at 5 dB SNR; (b), (c), and (d) enhanced speech using
MLSA, MAPA, and GMAPA, respectively. The spectrograms are
from a female voice saying “To Mr. Hawke that is as it should be”.

() (b)

(© (d
Fig. 3. Spectrograms: (a) noisy speech at 5 dB SNR; (b), (c), and (d)
enhanced speech using MLSA, MAPA, and GMAPA, respectively.

From (a), (b), and (c) in Fig. 3, both MLSA and MAPA effectively
removed noise components, while MAPA provided better noise
reduction performance than MLSA. From (c) and (d), GMAPA
showed even better noise reduction capability than MAPA.

4.2.2. Objective Evaluation

Tables II and III show the results of SDI and PESQ, respectively,
of MLSA, MAPA, and GMAPA. The results of MMSE are also
listed for comparison. Each value in the tables is an average of
three noise types—babble, train, and WGN, under a specific SNR.

Table II. SDI values for four estimators in different SNRs.

SNR MMSE MLSA MAPA GMAPA
0dB 0.4766 0.7915 0.4617 0.4050
5dB 0.1500 0.2478 0.1455 0.1317
10 dB 0.0485 0.0777 0.0471 0.0447
15 dB 0.0162 0.0243 0.0159 0.0158
20 dB 0.0058 0.0076 0.0057 0.0057
30 dB 0.0011 0.0007 0.0011 0.0008
40 dB 0.0005 0.0001 0.0005 0.0002
Table III. PESQ values for four estimators in different SNRs.
SNR MMSE MLSA MAPA GMAPA
0dB 2.0472 2.0162 2.0429 2.0575
5dB 2.3669 2.3161 2.3673 2.3814
10 dB 2.6936 2.6366 2.6942 2.7094
15dB 3.0429 2.9747 3.0430 3.0556
20 dB 3.4098 3.3406 3.4081 3.4131
30dB 3.9914 3.9954 3.9837 3.9846
40 dB 4.2704 4.3290 4.2595 4.2919

From Tables II and III, the proposed GMAPA algorithm out-
performed MMSE, MLSA, and MAPA in lower SNR conditions
(0-10 dB conditions). The results indicated that by optimally de-
termining a of the sigmoid function, GMAPA removed noise from
the noisy speech signal more effectively and thus provided better
performance for the objective evaluations. On the other hand, in
higher SNR conditions (20-40 dB conditions), GMAPA provided
better performance than MMSE and MAPA in most cases. This set
of results confirmed that by using a smaller &, GMAPA overcame

the limitations of MMSE and MAPA that over-compensated and
thus generated distorted enhanced speech. However, the results of
GMAPA in 30 dB and 40 dB conditions were slightly worse than
MLSA. Since a used in GMAPA was determined based on esti-
mated a posteriori SNR, ¥, and may not be always zero, it was
reasonable that MLSA (with a=0) gave better results than GMAPA
in high SNR conditions (SNR=30 dB and 40 dB).

4.2.3. Recognition Evaluation

Table IV lists the recognition results of MMSE, MLSA, MAPA,
and GMAPA. The table also lists our baseline result for compari-
son. The baseline result is conducted by using the original MFCC
for testing with no speech enhancement performed.

Table IV. WER values for different algorithms in different SNRs.

SNR || Baseline | MMSE MLSA MAPA | GMAPA
0dB 85.15 75.38 82.19 75.79 72.21
5dB 63.49 47.28 56.05 47.75 43.13
10dB 34.86 22.7 29.13 22.89 19.62
15dB 14.41 9.62 12.42 9.56 7.72
20dB 491 3.62 4.63 3.55 3.03
Clean 0.36 0.39 0.34 0.36 0.33
Avg 40.56 31.72 36.88 31.91 29.14

From Table IV, we first observed that all the four spectral res-
toration algorithms achieved lower WERs than the baseline in most
SNR conditions. Since we applied a same algorithm for both train-
ing and testing speech data, this set of results confirmed that all the
four algorithms can effectively reduce the mismatch between train-
ing and testing conditions for speech recognition. Next when com-
paring the four algorithms, GMAPA gave the lowest WERs over
all SNR conditions. Especially, it was noted that from Tables II
and III, MLSA achieved better SDI and PESQ performances than
GMAPA in higher SNR conditions (30 dB and 40 dB); the pro-
posed GMAPA still outperformed MLSA in the recognition results
for high SNR conditions (20 dB and clean) in Table IV. The results
suggest that GMAPA has better capability to handle the mismatch
issue and can be more suitable for speech recognition systems than
the other three algorithms. Finally when comparing to the baseline,
GMAPA provided a clear 28.16% average WER reductions (from
40.56 % to 29.14 %) over 0-20 dB SNR conditions.

5. CONCLUSION

In this paper, we proposed the GMAPA algorithm to spectral resto-
ration for speech enhancement. The GMAPA algorithm used a
scale factor, a, to determine the prior information for calculating
the gain function. A mapping function was also designed to opti-
mally determine a according to the estimated SNR level of the
noisy speech. We conducted both objective and recognition evalua-
tions to test the proposed GMAPA algorithm. The objective evalu-
ation results from both SDI and PESQ confirmed that GMAPA
outperformed MMSE, MLSA, and MAPA under lower SNR con-
ditions, with achieving similar scores to MLSA under higher SNR
conditions. Meanwhile, the recognition results showed that the
proposed GMAPA algorithm provided better performance than the
other three algorithms consistently over different SNR conditions.
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