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ABSTRACT
A single-channel dereverberation method with low computational

complexity is proposed. We introduce the complementary Wiener
filter which can suppress a late reverberation during silence inter-
vals via theoretical analysis and numerical calculation. An imple-
mentation represents reductions both of memory consumption and
operative calculations compared to a conventional method; each re-
duction is almost by half. Dereverberation performance is evalu-
ated by an experimental simulation using speech signals and mea-
sured room impulse responses. The performance under several hun-
dreds of msec of the reverberation time is similar to the conventional
method: 6 [dB] reverberation reduction and 3 [dB] improvement of
target-to-interference ratio.

Index Terms— Speech enhancement, Reverberation, Wiener
filter, Computational complexity

1. INTRODUCTION

Speech communication and recognition systems are generally used
under a reverberant condition such as meeting rooms; generally, a re-
verberation time is under 1 sec. Speech quality and recognition per-
formance are degraded in the reverberant condition. To cope with
this problem, dereverberation techniques have been studied in re-
cent years. Multi-microphone techniques are utilized to estimate
a late reverberation based on a spatial correlation in [1–5], or to
estimate a inverse filter by MINT theorem [6] in [7, 8]. A multi-
microphone technique leads to a large-sized apparatus, therefore,
single-channel methods are required; however, a serious drawback of
a single-channel method is no spatial information. Some of single-
channel speech enhancement techniques provide successful results,
such as the spectral subtraction [9], MMSE-STSA [10], etc. These
techniques have been applied to dereverberation methods, and they
have succeeded such as in [8, 11–13].

In voice terminals, several functions to improve speech quality
work concurrently, for example an echo canceler and a noise reduc-
tion. Each function should work with low computational complexity
because of the concurrent execution. Therefore, more efficient dere-
verberation methods are always required by industries than previ-
ously proposed methods. The Wiener filer (WF) is commonly used
to enhance the target signal such as in [14]. If the WF would be
described as β and 0 ≤ β ≤ 1, then 1 − β could be so-called
“complementary Wiener filter” (CWF) such as in [15]. We consider
the CWF to suppress a late reverberation. It will be shown that the
CWF can achieve not only lower computational complexity but also
similar dereverberation performance in the following sections.

The work presented here is focused on the formulation to estab-
lish a low computational complexity dereverberation method, which

takes advantage of performance similar to the conventional method
in [11] with lower computational complexity. Approaches to im-
prove dereverberation performance take a considerable complexity,
because they utilize log-MMSE-STSA [16] in Chapter 3 of [8], long-
term multi-step linear prediction in [12] or latent variable decompo-
sition in [17], etc. To apply these methods to voice terminals, one
issue is to achieve low complexity with similar performance, which
was not considered in these earlier studies.

The rest of this paper is organized as follows. Section 2 shows
a signal model and derivation of a power spectrum model. Section 3
introduces the proposed method with the CWF. Section 4 shows ex-
perimental results. Section 5 concludes this paper.

2. SIGNAL MODEL

2.1. Signal model in the time domain

s(n) is a source signal at a sampling index n by a sampling fre-
quency Fs. x(n) is an observation which consists of a convolution
between s(n) and a room impulse response (RIR) h(n); x(n) =
s(n)∗h(n) =

∑
µ s(n)h(µ−n). In this paper, we consider a statis-

tical model of the RIR proposed by Polack [18]. The model consists
of the zero-mean Gaussian random process b(n) and a reverberant
time T60 [19]. T60 means a time length of an energy decay until
−60 [dB]. The RIR h(n) is formulated as h(n) = b(n)e−∆n(n ≥
0), and ∆ = (3 ln 10)/(T60Fs) = (3 ln 10)/N60, where N60 is the
sample length which corresponds to T60, and h(n) = 0(n < 0). The
spatial expectation Eh[·] of the statistical RIR model is described by
the Dirac’s delta function with a lag τ as:

Eh[h(n)h(n− τ)] = σ2
bδ(τ)e

−2∆n, (1)

where σ2
b is the variance of b(n). Eq. (1) involves a spatial uncorre-

lation of the RIR model which is described as Eh[h(n)h(n− τ)] =
0(τ ̸= 0).

Linear prediction is widely used to model speech signals based
on the quasi-stationary property, and this fact includes that speech
is correlated during a phoneme; in contrast, phonemes are uncorre-
lated to each other. This is a successful assumption used in other
research [11,12]. Consider an autocorrelation function of the speech
signal R(m)

s (τ) with this assumption as follows:

R(m)
s (τ) = En[s(n)s(n− τ)] |R(m)

s (τ)| ≈ 0 (iff τ ≥ NE)

= En[s(n+mNE)s(n+mNE − τ)], (2)

where En[·] means the temporal expectation and m means a frame
index. NE corresponds to the sample length of an early-reflection
(ER). The length of the ER is commonly considered as a few

7452978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



or several tens of msec. In addition, the RIR after the rever-
beration time T60 is assumed to be zero, because the energy is
decayed enough without loss of generality. Consequently, the ob-
served signal can be separated into x(n) ≡ xE(n) + xR(n) as
x(n) =

∑NE−1
i=0 h(i)s(n − i) +

∑N60
i=NE

h(i)s(n − i), where
xE(n) and xR(n) are the ER and late reverberant (LR) components
of the observed signal.

2.2. Autocorrelation function

In this section, we consider the autocorrelation function of the ob-
served signal. The spatial and temporal expectation En,h[·] of the
observed signal is considered.

2.2.1. Autocorrelation of the early-reflected signal

The statistical model proposed by Polack assumes spatial uncorrela-
tion in Eq. (1). The RIR is a linear time-invariant system, therefore
the temporal expectation should not be considered under a set of
source and microphone positions. In contrast, the speech signals de-
pend on only their phonemes, in other words speech is not spatially
stochastic. The spatial and temporal expectation of the ER compo-
nent R(m)

E,x(τ) ≡ En,h[xE(n)xE(n− τ)] can be considered as:

R
(m)
E,x(τ) =

NE−1∑
i=0

NE−1∑
l=0

Eh[h(i)h(l)]En[s(n− i)s(n− τ − l)]. (3)

The statistical RIR model is described by the i.i.d. Gaussian random
process as mentioned in Section 2.1. Substituting this Eq. (1) into
Eq. (3) and using Eq. (2), the autocorrelation of the ER signal is
formulated as follows:

R
(m)
E,x(τ) = σ2

bR
(m)
s (τ)

1− e−2∆NE

1− e−2∆
≡ (σ′

b)
2R(m)

s (τ). (4)

2.2.2. Autocorrelation of the late reverberant signal

Considering the same way in Section 2.2.1, the autocorrelation of
the LR signal R(m)

R,x(τ) ≡ En,h[xR(n)xR(n− τ)] is formulated as
follows:

R
(m)
R,x(τ) = (σ′

b)
2

M60∑
m′=1

e−2∆m′NER(m−m′)
s (τ), (5)

where M60 = N60/NE is the number of frames corresponding to
T60.

2.2.3. Cross-correlation between the early-reflected and late rever-
berant signal

The expectation of the RIR becomes the Dirac’s delta function
in Eq. (1), therefore, it only has a value at the same sampling index
that is, i = l. The region of the ER and LR signals is never over-
lapped, and this fact leads to the condition that Eh[h(i)h(l)] = 0.
Therefore, the cross-correlation term becomes zero.

2.2.4. Autocorrelation function of the observed signal

Using the results in Section 2.2.1, 2.2.2 and 2.2.3, the autocorrela-
tion function of the observed signal in the m-th frame is obtained as
follows:

R(m)
x (τ) = (σ′

b)
2

{
R(m)

s (τ) +

M60∑
m′=1

e−2∆m′NER(m−m′)
s (τ)

}
, (6)

Note that e−2∆m′NE = 1 under the condition m′ = 0.

2.3. Signal model in the frequency domain

In the previous sections, the observed signal is modeled in terms
of the autocorrelation functions of the ER and LR components.
By the Wiener-Khinchin theorem, the power spectra are obtained
from the autocorrelation functions. Each signal is transformed
into the frequency domain by the short time Fourier transform
method (STFT). Describing STFT as F [·], each signal is described
as S(k,m) = F [s(n)], X(k,m) = F [x(n)]. The power spectra
of the source and observed signals, PS(k,m) and PX(k,m), are
obtained by STFT from the autocorrelation functions R

(m)
s (τ)

and R
(m)
x (τ). The Fourier transform is linear, therefore, the

power spectrum of the observed signal is decomposed into the
ER and LR components as well, as in the case of the time domain;
PX(k,m) = PE,X(k,m) + PR,X(k,m), where P(·),X(k,m) is
the power spectrum for each component. PE,X(k,m) is obtained
using the source power spectrum PS(k,m) as follows:

PE,X(k,m) = F [(σ′
b)

2R(m)
s (τ)] = (σ′

b)
2PS(k,m), (7)

and also PR,X(k,m) is obtained as follows:

PR,X(k,m) = (σ′
b)

2
M60∑
m′=1

e−2∆m′NEPS(k,m−m′). (8)

3. PROPOSED DEREVERBERATION METHOD

By applying a dereverberation spectral gain G(k,m) to the ob-
served signal X(k,m), an output dereverberated signal Y (k,m) =
G(k,m)X(k,m) is obtained. The output signal is transformed into
the time domain by inverse STFT, y(n) = F−1[Y (k,m)].

3.1. Wiener filter for speech enhancement

First of all, we consider the WF for speech enhancement under the
reverberant condition. The observed signal X(k,m) can be de-
composed into ER and LR components; X(k,m) = XE(k,m) +
XR(k,m). The averaged power spectrum is obtained by the ex-
pectation of the frame-by-frame power spectra, and it is also de-
scribed by the inner product of each signal in the frequency domain
as P(·)(k) = Em[P(·)(k,m)] = Em[(·)(k,m)(·)∗(k,m)]. P(·)(k)
is the averaged power spectrum and Em[·] is the expectation over
the frame index m.

We consider the target signal as XE(k,m), because several
tens of msec is a meaningful length of RIR for measures such as
‘D50’ (Definition) or ‘C80’ (Clarity) in the room acoustics research
field [20]. ‘D50’ is the early to total sound energy ratio. ‘C80’ is
the early to late arriving sound energy ratio. Each number means
the time length of the early sound interval of msec. The objective
function to minimize the mean square error is formulated as follows:

J (β(k)) = Em

[
{XE(k,m)− β(k)X(k,m)}

{XE(k,m)− β(k)X(k,m)}∗
]
, (9)

where β(k) is the frequency dependent variable. Differentiating
J (β(k)) with respect to β(k), considering that Em[XE(k,m)X∗(k,m)]
and Em[X∗

E(k,m)X(k,m)] become PE,X(k), and the WF is ob-
tained as follows:

β(k) =
PE,X(k)

PX(k)
=

PE,X(k)

PE,X(k) + PR,X(k)
. (10)
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Fig. 1. LR suppression of the complementary Wiener filter.

β(k) enhances the target signal under the reverberant condition.
However, a critical issue is how to estimate the ER component
PE,X(k) in Eq. (10).

3.2. Complementary Wiener filter

The CWF, 1 − β(k) as mentioned in Section 1, can suppress the
LR component without an estimation of the ER component, and in
the following sections, we will introduce a theoretical analysis. Sub-
stituting Eq.(7) and Eq.(8) into Eq. (10), the CWF is obtained as
follows:

1− β(k) =
Em[PR,X(k,m)]

PX(k)
= e

− 6 log 10
T60

TE . (11)

The right side of Eq. (11) is obtained from the RIR model , and Fig. 1
shows characteristics of the CWF. When T60 is under 1 sec, a re-
markable fact is that the CWF can take small values under −10 [dB]
based on the RIR model. When T60 is over 1 sec, the performance
degrades according to a longer reverberation. This result shows the
performance limitation of the CWF for dereverberation.

3.2.1. Hypothesis of speech presence

Hereafter, we focus on the hypothesis of the speech presence which
is usually considered in the voice activity detection (VAD) research
field. Note that considering the hypothesis of the speech presence
for the dereverberation method is also adopted by Habets [8]. The
speech presence of the source signal is considered as the hypothe-
sis H1, in contrast, speech absence (silence) is hypothesized as H0.
Using these hypotheses, the source power spectrum is represented
as:

PS(k,m) =

{
PS(k,m)|m∈H1 for target interval
PS(k,m)|m∈H0 for silence interval

, (12)

where PS(k,m)|m∈H(·) means the hypothetical power spectrum. In
addition, we consider probability of each hypothesis; ρ is the target
presence probability and 1− ρ is the silence probability.

Considering the hypothetical power spectra, PS(k,m)|m∈H0

can be ignored without a loss of generality, because the power
in the silence interval is negligible. The observed power spec-
trum is transformed with the relationship Em[PS(k,m)|m∈H1 ] =

ρEm[PS(k,m)] as follows:

PX(k)|m∈H1∪H0

= (σ′
b)

2Em

[
M60∑
m′=0

e−2∆m′NEPS(k,m−m′)|m−m′∈H1

]

= (σ′
b)

2
M60∑
m′=0

e−2∆m′NEEm[PS(k,m−m′)|m−m′∈H1
]

= ρPX [k] = ρ{PE,X [k] + PR,X [k]}. (13)

3.2.2. Observation in the silence interval

When the observed signal is in the silence interval, the summation
of PX(k)|m∈H1∪H0 in Eq. (13) is always considered under m′ ̸= 0
as follows:

Em[PX(k,m)|m∈H0 ]

= (σ′
b)

2
M60∑

m′=m′
1

e−2∆m′NEEm[PS(k,m−m′)|m∈H0∩m−m′∈H1
],

≡ Em

[
Par(m′

1)
[PR,X(k,m)|m∈H0∩m−m′∈H1

]
]
, (14)

m′
1 is the frame index from the beginning of the silence interval.

Par(m′
1)
[·] denotes a partial sum operator, and PR,X(k)|m∈H0∩m−m′∈H1

means a LR power spectrum which is observed in the silence inter-
val of the source signal. The expectation of the partial sum satisfies
inequalities as follows:

Em

[
Par(m′

1)
[PR,X(k,m)|m∈H0∩m−m′∈H1

]
]

≤ Em[PR,X(k,m)|m∈H0∩m−m′∈H1
],

< Em[PR,X(k,m)|(m∈H0∪H1)∩(m−m′∈H1)]

= ρEm[PR,X(k,m)]. (15)

Using Eq.(15), the ratio of two power spectra in Eq. (13) and Eq. (14)
is less than the CWF as:

Em[PX(k,m)|m∈H0 ]

PX(k)|m∈H1∪H0

<
PR,X(k)

PE,X(k) + PR,X(k)

= 1− β(k). (16)

3.2.3. Observation in the target interval

When the observed signal is in the target interval, the ratio of the two
power spectra of the observed signal, in the current frame m and the
averaged one, can be considered by the same as way in Section 3.2.2.

Em[PX(k,m)|m∈H1 ]

PX(k)|m∈H1∪H0

>
ρPE,X(k)

ρ{PE,X(k) + PR,X(k)}
= β(k). (17)

This ratio is greater than the WF.

3.3. Discussion and implementation

As shown in Section 3.2.2 and 3.2.3, when the observation is in the
target interval, the statistical characteristic of the ratio between cur-
rent and averaged power spectra preserves the target signal; the lower
limit of the ratio is equal to the WF. In contrast, when the observation
is in the silence interval, the ratio reduces reverberation by Eq. (16);
the upper limit of the ratio is equal to the CWF. Note that the pro-
posed method doesn’t use a VAD method and only uses the current
and averaged power spectra.
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Table 1. Experimental conditions

Room impulse response RWCP database (measured) [22]
T60: 0.3, 0.47, 0.6, 0.78, 1.3 sec

Source signal JNAS speech database [23]
(Number of sources) (8; 4 males, 4 females)
Sampling frequency 16 kHz

FFT and window size found by the grid search
Shift size 1/4 of window size

Analysis window Hann
Synthesis window Tukey

(Window size: 128, 256, 512, 1024, 2048)
(FFT size: same as or 2 times of a window size)

For an implementation, the dereverberation spectral gain is con-
sidered as:

G(k,m) =

 1 PX (k,m)
RX (k,m)

> 1

PX(k,m)

RX(k,m)
otherwise

, (18)

where RX(k,m) is an approximation of the averaged power spectra
and it is formulated by the exponentially moving average (EMA) of
the power spectrum PX(k,m) as:

RX(k,m) = αPX(k,m) + (1− α)RX(k,m− 1), (19)

where α is a weighting factor of the EMA.

4. EVALUATIONS

4.1. Experimental dereverberation simulation

The proposed method is evaluated by reverberation reduction [21]
(RR) and the improvement of target-to-interference ratio (TIR).
RR describes an amount of a reverberation reduction, meaning the
energy change under the hypothesis H0. TIR is formulated as

10 log10

∑
n x2

E(n)∑
n{xE(n)−z(n)}2 , where z(n) is the signal that should be

evaluated. We consider the improvement from input to output TIR;
in the case of input TIR, z(n) is the observed signal x(n), and in
the case of output TIR, z(n) is the processed signal y(n). Speech
signals are convolved by measured RIR in Table 1, and results of
each objective criteria are averaged over eight speech signals in
Table 1 for each T60. The proposed method is compared to the
conventional method by Lebart [11] (LebSS), because this is a rep-
resentative single-channel dereverberation; however, considerable
computational costs are required. For LebSS, the T60 has to be
informed, and in this evaluation we obtain T60 from the RWCP
database [22] description. Optimal smoothing parameters of LebSS
for an estimation of the reverberant spectrum and a priori SNR are
found by a grid search for the maximum TIR improvement. For the
proposed method, the time lengths of phonemes are different from
each speaker, therefore we also apply EMA to the denominator of
the spectral gain and weighting factors of EMA are found by grid
search. For each method, the STFT parameters are also found by
grid search.

4.2. Discussion with computational complexity

For T60 under 0.5 sec, both the TIR improvement and RR of the
proposed method are almost same as LebSS in Fig. 2 and Fig. 3.
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Fig. 2. Target-to-interference ratio improvement
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Fig. 3. Reverberation reduction

For T60 above 0.5 sec, the RR is degraded. On the other hand, the
degradation of the TIR improvement is still small for 0.5 < T60 <
0.8 sec. For the condition as T60 > 1 sec, the proposed method is
worse than LebSS on both of the objective measures.

The computational complexity of the proposed method in one
frequency bin is less than the conventional method; it is reduced by
50%. Memory consumption of LebSS must store a few frames of
power spectra and a priori SNR; in contrast, each EMA stores one
power spectrum for the proposed method. Divisions on embedded
processors are usually implemented by an iterative method, therefore
the number of divisions is one of the dominant computational costs.
Two divisions are needed for LebSS to obtain a reverberant spectrum
and a priori SNR, on the other hand the proposed method uses only
one division to obtain a spectral gain.

Therefore, the proposed method is computationally efficient and
shows similar performance to the conventional method in practical
situations where T60 is under several hundreds of msec such as in a
meeting room.

5. CONCLUSION

A computationally efficient single-channel dereverberation method
is proposed. The proposed method is based on the complementary
Wiener filter, and the memory consumption and the number of oper-
ative calculations are by half reduced compared to the conventional
method. The reductions are achieved for the frequency domain op-
eration, with similar dereverberation performance compared to the
conventional method for practical situations. Future work includes
analyzing under not only reverberant conditions but also noisy con-
ditions, and evaluating the subjective sound quality.
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[19] M. R. Schroeder, “New method of measuring reverberation
time,” J. Acoust. Soc. Am., vol. 37, no. 6, pp. 409, Mar. 1965.

[20] H. Kuttruff, Room Acoustics, Spon Press, London, UK, 4th
edition, 2000.

[21] E.A.P. Habets, “Single-channel speech dereverberation based
on spectral subtraction,” in Proc. of ProRISC 2004, Nov. 2004,
pp. 250–254.

[22] “RWCP sound scene database,”
http://research.nii.ac.jp/src/en/RWCP-SSD.html.

[23] “JNAS speech database,”
http://research.nii.ac.jp/src/en/JNAS.html.

7456


