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ABSTRACT

A speech dereverberation method is proposed that is robust against
background noise. In contrast to conventional methods based on the
linear prediction of the given microphone input signal, in which the
linear prediction coefficients are not fully optimized when there is
background noise, the proposed method optimizes the coefficients
by linear prediction of the noiseless reverberant speech signal even
when there is background noise. The noiseless reverberant speech
signal and the parameters are iteratively updated on the basis of the
expectation maximization algorithm. In the expectation step, suffi-
cient statistics of latent variables which include noiseless reverberant
speech signal are estimated using the Kalman smoother. Unlike the
standard Kalman smoother, which uses a time-invariant covariance
matrix as a state-transition covariance matrix, the proposed method
utilizes a time-varying covariance matrix, enabling it to meet the
time-varying speech characteristics. The parameters are updated so
that the Q function is increased in the maximization step. Experi-
mental results show that the proposed method is superior to conven-
tional methods under noisy conditions.

Index Terms— Noise reduction, dereverberation, kalman
smoother

1. INTRODUCTION

Room reverberation and background noise are major problems for
speech recording and speech communication systems. Their levels
must therefore be reduced simultaneously.

Several dereverberation techniques using multichannel in-
verse filtering have been developed [1][2][3][4][5]. A commonly
used dereverberation technique is multi-step linear prediction
(MSLP) [3], which reduces late reverberation by linear predic-
tion of the microphone input signal. This technique is easy to
implement and reduces reverberation effectively when there is no
background noise. If the microphone input signal is contaminated
by background noise, the linear prediction coefficients are updated
so as to minimize the summation of the residual late reverberation
and residual background noise after linear prediction. Therefore, if
the background noise is dominant, dereverberation performance is
degraded.

We have developed a speech dereverberation technique based
on linear prediction of noiseless reverberant speech signal that over-
comes this problem. The linear prediction coefficients are optimized
so as to minimize only the amount of the residual reverberation after
linear prediction even when the background noise is dominant. Since
the noiseless reverberant speech signal is not given in advance, the
proposed method estimates the noiseless reverberant speech signal
and dereverberation parameters in an iterative manner using the ex-
pectation maximization (EM) algorithm [6]. In the expectation (E)
step, the Kalman smoother [7] is used to obtain sufficient statistics

of latent variables which include the noiseless reverberant speech
signal. The state-transition noise is related to the direct path of
the speech signal in the state-transition equation. By extracting the
state-transition noise, we can obtain the noiseless and dereverberated
speech signal. A time-varying covariance matrix is used as a state-
transition covariance matrix to meet the time-varying characteristics
of the speech sources. The dereverberation parameters are updated
so as to increase the Q function in the maximization (M) step. Ex-
perimental results show that the proposed method can reduce rever-
beration and background noise effectively in noisy environments.

2. PROBLEM STATEMENT

2.1. Microphone input signal model

The focus here is on multichannel processing. Assuming that there
is a single speech source and background noise, we can model the
multichannel microphone input signal at frequency f and for frame
τ as

xf,τ =

L1−1X

l=0

sf,τ−laf,l +wf,τ , (1)

where xf,τ = [ x1,f,τ . . . xNm,f,τ ]T , T is the transpose op-
erator of a matrix or vector, Nm is the number of microphones, L1

is the tap length of the acoustic transfer function (ATF), sf,τ is the
source signal at each time-frequency point, af,l is the lth tap of the
ATF of the speech source at each time-frequency point, and wf,τ is
the background noise term (white Gaussian noise).

2.2. Conventional autoregressive model for microphone input
signal

In the conventional methods [3], (1) is transformed into an auto-
regressive model of the microphone input signal:

xf,τ =

D−1X

l=0

sf,τ−laf,l +

L2−1X

l=D

Wf,lxf,τ−l + bf,τ , (2)

where L2 = L1 + Li − 1, Li is the length of the inverse filter
of the ATF, D is the tap-length of the early reflection, and bf,τ is
the convolutive background noise term with the ATF of the speech
source and the inverse filter.

In the conventional time-varying source-model-based derever-
beration techniques, such as that of Nakatani et al. [9], the linear
prediction coefficientsWf,l are estimated using

Ŵf,l = argmin
Wf,l

LTX
τ=1

G(Wf,l,xf,τ ), (3)
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G(Wf,l,xf,τ ) =

(xf,τ −
L2−1X

l=D

Wf,lxf,τ−l)
HR−1

x,f,τ (xf,τ −
L2−1X

l=D

Wf,lxf,τ−l),

(4)

where LT is the number of the frames used for parameter optimiza-
tion, H is the Hermite transpose operator of a matrix or vector,
and Rx,f,τ = E[xf,τx

H
f,τ ]. Let xf,τ be divided into speech term

cf,τ =
PL1−1

l=0 sf,τ−laf,τ,l and background noise termwf,τ :

xf,τ = cf,τ +wf,τ . (5)

Assuming that cf,τ and wf,τ are uncorrelated, we can approximatePLT
τ=1 G(Wf,l,xf,τ ):

LTX
τ=1

G(Wf,l,xf,τ ) ≈
LTX
τ=1

G(Wf,l, cf,τ ) +

LTX
τ=1

G(Wf,l,wf,τ ).

(6)
The first term is the amount of residual reverberation after linear
prediction by Wf,l, and the second term is the amount of residual
background noise. The conventional method thus works by updating
the linear prediction coefficients so as to minimize the summation
of the residual reverberation and the residual background noise after
linear prediction. If the background noise is small, the first term is
dominant. Therefore, linear prediction coefficients that can reduce
reverberation accurately should be obtained. However, if the back-
ground noise is dominant, dereverberation performance is degraded
because the linear prediction coefficients are updated so as to mini-
mize the residual background noise.

3. PROPOSED METHOD

3.1. Linear prediction with latent multichannel source signal

Our proposed speech dereverberation method avoids performance
degradation due to background noise by minimizing only the resid-
ual reverberation after linear prediction instead of minimizing the
summation of the residual reverberation and residual background
noise. Since the noiseless speech signal cannot be obtained in ad-
vance, sufficient statistics of latent variables which include the noise-
less speech signal are estimated by using the Kalman smoother [7].
The linear prediction coefficients are obtained by using the estimated
statistics as follows:

Ŵf,l = argmin
Wf,l

LTX
τ=1

E[G(Wf,l, cf,τ )], (7)

where E is the operator for mathematical expectation. A block di-
agram of the proposed method is shown in Fig. 1. The Kalman
smoother corresponds to the E step in the EM algorithm [6]. In the M
step, the dereverberation parameters are updated using the statistics
obtained in the E step so as to increase the Q function. The noiseless
speech signal and dereverberation parameters are thereby updated in
an iterative manner.

3.2. Sufficient statistics estimation

Sufficient statistics of latent variables which include the noiseless
speech signal are the minimum mean square error (MMSE) estimate
and the mean square error (MSE) of the latent variables. These statis-
tics are effectively calculated by the Kalman smoother. At first, the
microphone input signal is converted into a state-transition model
and an observation model.

E step

Kalman filtering

τ,fx

ττ |,fq

TLK1lFor =

Kalman smoother

tttLf T
RRq ,, 1,|, −τ

M stepM step
Linear prediction coefficients

optimization

Optimization of remaining parameters 

lf ,Ŵ

τ,,, fwu vRR

Early reflection estimation

τ,
ˆ
fe

Fig. 1. Block diagram of proposed method

3.2.1. State-transition model

The noiseless reverberant speech signal in the microphone input sig-
nal can be expressed by the following state-transition model as

qf,τ = Afqf,τ−1 + uf,τ , (8)

whereAf is the state-transition matrix, qf,τ is a state vector, qf,τ =
[ cH

f,τ cH
f,τ−1 cH

f,τ−L2+2 ]H ,Af is defined as

Af =

2
666664

0Nm×Nm(D−1) Wf,D . . . Wf,L2−1

INm×Nm 0 0 0
0Nm×Nm INm×Nm 0 0
0Nm×Nm 0Nm×Nm INm×Nm 0

...

3
777775

,

(9)
and uf,τ is defined as

uf,τ = [ eT
f,τ 0 0 ]T , (10)

where ef,τ is an M ×M matrix. This matrix is the summation of
the direct path and the early reflection term:

ef,τ =

D−1X

l=0

sf,τ−laf,l. (11)

The speech sources can be modeled as non-stationary source signals
that are located at the same location while talking. Under these con-
ditions, and similar to the modeling used in the conventional method
[5], the probabilistic distribution of ef,τ is modeled as a multichan-
nel time-varying Gaussian distribution [10] with a 0-mean vector:

p(ef,τ ) = N (ef,τ ;0, vf,τRu,f ), (12)

where vf,τ is a time-varying scalar coefficient which reflects the
time-varying characteristics of the speech source andRu,f is a time-
invariant matrix which reflects the time-invariant characteristics of
the speech source location.
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3.2.2. Observation model

The microphone input signal which consists of the noiseless rever-
berant speech and the background noise can be derived as the fol-
lowing observation model:

xf,τ = Fqf,τ +wf,τ , (13)

where

F =

»
INm×Nm 0

0 0

–
. (14)

The probabilistic distribution of observation noise wf,τ is approxi-
mately modeled as a stationary Gaussian distribution with a 0-mean
vector as follows:

p(wf,τ ) = N (wf,τ ;0,Rw,f ), (15)

whereRw,f is the time-invariant covariance matrix of wf,τ .

3.2.3. Kalman smoother for sufficient statistics estimation

The MMSE estimate and the MSE of the state vector qf,τ are ob-
served under the condition that the microphone input signal xf,τ

(τ = 1 . . . LT ) is given.
Kalman filter:

qf,1|0 = ıf , (16)
Rf,1|0 = zf , (17)

qf,τ |τ−1 = Afqf,τ−1|τ−1, (18)
qf,τ |τ = qf,τ |τ−1 +Kf,τ (xf,τ − Fqf,τ |τ−1), (19)

Kf,τ = Rf,τ |τ−1F
HR−1

x,f,τ , (20)
Rf,τ |τ−1 = Rf,τ−1|τ−1 + vf,τRu,f , (21)

Rx,f,τ = Rw,f + FRf,τ |τ−1F
H , (22)

Rf,τ |τ = (I −Kf,τF )(Rf,τ |τ−1), (23)

where ıf is the initial MMSE estimate of the latent variable, zf is
the initial MSE, qf,τ1|τ2 is the MMSE estimate of qf,τ1 under the
condition that xf,τ (τ = 1 . . . τ2) are observed, and Rf,τ is the
MSE matrix.
Kalman smoother:

Rf,τ |LT
= Rf,τ |τ

− Bf,τ (Rf,τ+1|τ −Rf,τ+1|LT
)BH

f,τ , (24)
qf,τ |LT

= qf,τ |τ +Bf,τ (qf,τ+1|LT
− qf,τ+1|τ ),(25)

Pf,τ = Rf,τ |LT
+ qf,τ |LT

qH
f,τ |LT

, (26)

Pf,τ,τ−1 = Rf,τ,τ−1|LT
+ qf,τ |LT

qH
f,τ−1|LT

, (27)

Rf,τ,τ−1|LT
= Rf,τ |τB

H
f,τ−1

− Bf,τ (AfRf,τ |τ −Rf,τ+1,τ |LT
)BH

f,τ−1,

(28)
Rf,LT ,LT−1|LT

= (I −Kf,LTF )AfRf,LT−1|LT−1, (29)

Bf,τ = Rf,τ |τA
H
f R

−1
f,τ+1|τ , (30)

The dereverberated noiseless speech signal is estimated as the
following state-transition noise:

ûf,τ = qf,τ |LT
−Afqf,τ−1|LT

, (31)

where the first Nmth row of ûf,τ is the dereverberated speech source
estimate.

3.3. Parameter optimization

In the M step, the parameters are updated by using the sufficient
statistics obtained using the Kalman smoother. The optimization
algorithm for the state-space model with the time-varying state-
transition covariance matrix is slightly modified by the parameter
optimization algorithm for the state-space model with the time-
invariant state-transition covariance matrix cited by [8]. The linear
prediction coefficients are obtained as

[ Wf,D . . . Wf,L2−1 ] =
“LTX

τ=2

P
(2)
f,τ,τ−1

vf,τ

”“LTX
τ=2

P
(2)
f,τ−1

vf,τ

”−1

,

(32)
where P (2)

f,τ−1 is the submatrix of Pf,τ−1 from the {Nm(D − 1) +

1}th column to the last column and from the Nm(D− 1) + 1th row
to the last row, and P (2)

f,τ,τ−1 is the submatrix of Pf,τ,τ−1 from the
{Nm(D − 1) + 1}th column to the last column and from the first
row to the Nmth row. The optimized linear prediction coefficients
and sufficient statistics are used to obtain the remaining parameters:

vt =
1

Nm
trace{R−1

u Q
(2)
f,τ}, (33)

Ru,f =
1

LT − 1

LTX
t=2

1

vt
Q

(2)
f,τ , (34)

Rw,f =
1

LT

LTX
τ=1

{xf,τx
H
f,τ − Fqf,τ |LT

xH
f,τ}, (35)

where Q(2)
f,τ is the submatrix of Qf,τ from the first column to the

Nmth column and from the first row to the Nmth row. Qf,τ is de-
fined as

Qf,τ = Pf,τ−AfP
H
f,τ,τ−1−Pf,τ,τ−1A

H
f +HPf,τ−1A

H
f . (36)

The initial MMSE estimate and the initial MSE of the state vector
are updated as follows:

ıf = qf,1|LT
, (37)

zf = Rf,1|LT
. (38)

4. EVALUATION

4.1. Setup

The proposed method was evaluated by using impulse responses
measured in a room (Fig. 2, RT60 = 430 ms) and a microphone array
with three elements. The impulse responses were measured at two
locations, with the direction of sound radiation from the loudspeaker
θ set to 0 degrees. The background noise was also recorded in the
same environment using the same microphone array. Original source
signals were extracted from the TIMIT database [11] for 34 speakers
(one utterance each). The evaluation metric was SDR increase:

SDR increase = 10 log10

PLT
n=1

PNm
m=1 sm(n)2PLT

n=1

PNm
m=1(sm(n)− ym(n))2

− 10 log10

PLT
n=1

PNm
m=1 sm(n)2PLT

n=1

PNm
m=1(sm(n)− xm(n))2

,

where xm(n) is the mth microphone input signal at the nth point,
sm(n) is the desired signal in the mth microphone at the nth point
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Fig. 2. Experimental environment: sound radiation direction θ set to
0 degrees.
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Fig. 3. Increase in SDR at location 1
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Fig. 4. Increase in SDR at location 2

(which is the summation of the direct sound and early reflection),
and ym(n) is the dereverberated signal for the mth channel. The
average value of ∆SNR for 34 utterances is used as the metric. The
SNR of the microphone input signal was set to 0, 5, 10, or 20 dB.
The other parameters were set as are shown in Table 1.

Table 1. Evaluation conditions
Sampling rate (Hz) 16,000
Frame size (pt) 1024
Frame shift (pt) 256
Number of microphones Nm 3
Number of EM iterations 20

The proposed method (PROPOSED) was compared with two other
methods

• LINEAR: Dereverberation using linear prediction of micro-
phone input signal. Covariance matrix of microphone input
signal is modeled as Rx,f,τ = vf,τRu,f , where vf,τ and
Ru,f are updated using EM algorithm.

• STATIONARY: Dereverberation using linear prediction of
microphone input signal and multichannel Wiener-filtering-
based stationary background noise reduction. Covariance
matrix of microphone input signal is modeled as Rx,f,τ =
vf,τRu,f +Rw,f where vf,τ , Ru,f , and Rw,f are updated
using EM algorithm.

As shown in Figs. 3 and 4, the lower the SNR of the microphone
input signal, the more effective the proposed method at each location
of the speech source. This means the proposed method can reduce
reverberation and the background noise effectively even when the
microphone input signal is recorded in noisy environments.

5. CONCLUSION

Our proposed noise robust speech dereverberation method is based
on linear prediction of the noiseless speech signal, which is esti-
mated using the Kalman smoother with the time-varying covariance
matrix as the state-transition covariance matrix. Noiseless speech
signal estimation and parameter optimization are performed in an it-
erative manner on the basis of the EM algorithm. Testing showed
that the proposed method is better than conventional methods under
noisy conditions.

6. RELATION TO PRIOR WORK

Previous linear prediction based dereverberation methods [3][4][5]
use a blind speech dereverberation technique: linear prediction of the
microphone input signal. In contrast, our proposed method uses lin-
ear prediction of the noiseless speech signal to reduce degradation of
speech dereverberation performance in noisy environments. While a
time-varying covariance-matrix-based source separation method has
been proposed [10], it is only for source separation without derever-
beration. The optimization scheme used in the proposed method is
based on optimization using the conventional Kalman smoother [8].
The conventional method uses a time-invariant covariance matrix
for the state-transition covariance matrix while our proposed method
uses a time-varying covariance matrix so as to meet the time-varying
speech characteristics.
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