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Abstract— This paper presents a single channel speech enhance-
ment technique based on sub-band modulator Kalman filtering for
laryngeal (normal) and alaryngeal (Esophageal speech) speech
signals. The noisy speech signal is decomposed into sub-bands and
subsequently each sub-band is demodulated into its modulator and
carrier components. Kalman filter is applied to modulators of all
sub-bands without altering the carriers. Performance of the proposed
system has been validated by Mean Opinion Score (MOS) for laryngeal
and Harmonic to Noise Ratio (HNR) for alaryngeal speech. An
improvement of 20% has been observed in MOS over sub-band Kalman
filtering for laryngeal speech, while 3 to 4 dB enhancement in HNR
has been observed for alaryngeal speech over the full-band Kalman
filtering.
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I. INTRODUCTION

Speech enhancement is an important branch of speech
signal processing that aims at suppression of noise to make
a speech signal more intelligible. An enhanced version of a
speech signal is useful for speech recognition applications,
mobile communication and coding etc. There has been many
algorithms proposed for speech enhancement including but not
limited to spectral subtraction [1], [2], Wiener filtering [3],
adaptive gain equalizer [4], [5], [6], [7] and Kalman filtering
[8], [9].

Kalman filtering is considered to be an optimal speech
enhancement algorithm that relies on a Minimun Mean Square
Error (MMSE) [10], [8] based method. The Kalman filtering
based speech enhancement has several advantages over other
speech enhancement methods, e.g. speech production model
using Linear Predication (LP), inherited to Kalman filtering
modeling. Kalman filter produces optimum results for non-
stationary signals and do not need stationary condition like
Wiener filtering [10].

The Kalman filter is used for single channel speech enhance-
ment by Analysis-Modification-Synthesis (AMS) frame work,
where noisy speech signal is segmented into frames using
short time Fourier transform (STFT), then a modification of
amplitude of STFT is applied using Kalman filtering followed
by inverse STFT and synthesis for enhanced speech signal [11].
Paliwal introduced the Kalman filtering for speech enhancement
[8]. Further modification to Kalman filtering has been observed
using the EM algorithm for autoregressive (AR) estimation
for Kalman filtering [12], [13], [14]. The enhancement for
colored noise corrupted speech has also been investigated in
[15] using Kalman filter. The most important and less complex
modification done by sub-band based Kalman filtering for

speech enhancement is by dividing the speech signal into a
number of sub-bands followed by Kalman filtering of each
sub-band [16], [17].

The Esophageal (E) speech is one type of alaryngeal speeches
used for speech production after laryngeal cancer treatment,
where larynx has been removed and normal speech in no more
possible. The E speech has low quality due to irregular vibration
of Paryngo-esophageal (PE) segments, and enhancement of E
speech has been extensively treated by LPC analysis/synthesis
[18], [19], [20], [21], [22], statistical methods [23], [24],
[25] and detailed analysis of E speech by our group can be
consulted from [26], [27], [28], [29], [30], [31], [32]. The
Kalman filter has been used for enhancement of E speech
along with pole stabilization and, improvement observed over
LPC analysis/synthesis framework [33], [34].

Recent research has used the approach to model speech sig-
nals as the combination of low and high frequency components,
called modulators and carriers respectively. The modulators
(low frequency) are considered to be most important for
speech intelligibility, i.e. if speech modulators are replaced
by a constant value, while preserving carriers, unintelligible
speech is obtained, in comparison to the case of preserving
modulators and replacing carriers with constant value retains
the intelligibility of speech [35]. Mathematically,

x(n) = m(n)c(n) (1)

where m(n) and c(n) are modulators and carriers respectively.
A trend has been observed in recent years that speech
enhancement by modifying modulators of speech signal is
done using different techniques. Results justify the use of
modulator filtering, e.g. convex optimization, and center of
gravity (CoG) demodulation, used to enhance speech signals
[36], [37].

This paper introduces a modification to sub-band based
Kalman filter based speech enhancement [16], by decomposing
sub-bands into its modulators and carriers components. The
Kalman filter is applied to modulators of sub-bands instead
of sub-bands directly. Performance of the system has been
validated by Mean Opinion Score (MOS) and spectrogram
for laryngeal (normal) speech by comparing it to sub-band
Kalman filtering [16], and Harmonic to Noise Ratio (HNR)
used for alaryngeal (E speech) by comparing it with full-band
Kalman filtering E speech enhancement [33], [34]. The next
sections introduce system components followed by results and
conclusion.
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Fig. 1. Sub-band Modulator Kalman Filtering Based Speech Enhancement

II. SYSTEM DESIGN

Fig. 1 shows the proposed system used for the enhancement
of noisy speech signal x(n).

A K bands band-pass filter is used to divide the input speech
signal x(n) into sub-bands according to:

xk(n) = hk(n) ∗ x(n) (2)

where hk(n) is impulse response of the kth sub-band filter and
∗ is convolution operator. Each sub-band is demodulated into
modulator mk(n) and carrier ck(n) coherently according to
CoG demodulation (Section III-A).

xk(n) = mk(n)ck(n) (3)

Sub-band modulators are modified by Kalman filtering (Section
IV), given by:

x̂k(n) = m̂k(n)ck(n) (4)

where m̂k(n) is modified modulator for sub-band k. The final
enhanced signal is obtained by adding all the modified sub-
bands according to the synthesis equation:

x̂(n) =

K∑
k=1

x̂k(n) (5)

III. DEMODULATION

Natural signals such as speech can be represented by the
corresponding high frequency and low frequency components,
called carriers and modulators respectively [35], [38], [39],
[40]. The speech signal can be represented (in modulators and
carriers sense) by equation (1). The decomposition of speech
signal into m(n) and c(n) can be acquired coherently or non-
coherently [35], [39], [40]. The non-coherent demodulation

estimates the modulators and carriers independent of each other,
while in coherent demodulation carriers are estimated first and
then modulators are estimated based on the equation (1). In
this paper, coherent demodulation has been used because of
its advantages over the non-coherent and in the present case,
carrier estimation is done using spectral center of gravity [41],
[35], [42].

A. Spectral Center of Gravity Carrier Estimation

The demodulation framework works on sub-bands, the filter
bank divides the speech signal into sub-bands, demodulation
process decomposes each sub-band into its carrier and modu-
lator components.

1) Sub-band Instantaneous Frequency: The first step in
calculating the carrier is to detect the instantaneous frequency
ωk(n) of each sub-band. The center of gravity approach
estimates the ωk(n) as the average frequency of instantaneous
spectrum of xk(n) [41], [35]. The instantaneous spectrum of
xk is calculated according to:

Sk(ω, n) =
∑
p

g(p)xk(n+ p)e−jωp (6)

where g(p) is a window function (hamming window of length
128 is used for this experiment). Center of Gravity (CoG)
estimation of ωk(n) is given by:

ωk(n) =

∫ π
−π ω|Sk(ω, n)|

2dω∫ π
−π |Sk(ω, n)|2dω

(7)

The phase φk(n) is obtained by the following equation:

φk(n) =

n∑
p=0

ωk(p) (8)

2) Carrier estimation: Carrier ck(n) obtained by exponen-
tiating φk(n):

ck(n) = exp[jφk(n)] (9)

The carrier estimation for sub-band k gives the related
modulator as:

mk(n) = xk(n)/ck(n) = xk(n)c
∗
k(n) (10)

IV. SUBBAND MODULATOR KALMAN FILTERING

It is considered that modulators of speech signal can be
represented by an autoregressive (AR) process, i.e. output
of an all-pole system excited by white Gaussian noise and
represented by a difference equation:

mk(n) =

p∑
j=1

ak,jmk(n− j) + wk(n) (11)

where ak,j(n), p and wk(n) are Linear Predication Coeffi-
cients (LPC), order of AR process and input white Gaussian
noise(with zero mean and variance σ2

k,w) respectively for the
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kth sub-band modulator mk(n). The observed noisy modulator
for sub-band k is given by sk(n) as:

sk(n) = mk(n) + vk(n) (12)

where vk(n) is white Gaussian additive observation or mea-
surement noise with zero mean and variance σ2

k,v for sub-band
k. The equations given above can be given in the state space
representation as:

mk(n) = Fkmk(n− 1) + gwk(n) (13)

sk(n) = HTmk(n) + vk(n) (14)

where mk(n) = [mk(n− p+ 1)mk(n− p+ 2) · · ·mk(n)].

Fk =


0 1 0 ... 0
0 0 1 ... 0

...
...

... ...
...

0 0 0 ... 1
−ak,p −ak,p−1 −ak,p−2 ... −ak,1

 (15)

gT = HT = [0, 0, . . . , 1] (16)

The Kalman filter provides the estimate of mk(n), providing
observation sk(1), sk(2), .....sk(n) [15] as:

m̂k(n) = Fkm̂k(n− 1) +Kk(n)[sk(n)−HTFkm̂k(n− 1)]
(17)

Kk(n) = Pk(n|n− 1)H[Rk +HTPk(n|n− 1)H]−1 (18)

Pk(n|n− 1) = FkPk(n− 1|n− 1)FTk + gQkg
T (19)

Pk(n) = [I −Kk(n)h
T ]Pk(n|n− 1) (20)

where Kk(n) is Kalman gain, Pk(n|n − 1) is a priori error
covariance matrix and Pk(n) is error covariance matrix, Rk and
Qk are measurement noise covariance matrix and input noise
covariance matrix respectively for sub-band k. The system is
initialized using the noisy modulator:

m̂k(0) = mk,0 = [sk(1), sk(2), . . . , sk(p)] (21)

Pk(0|0) = Pk,0 = diag[Rk, Rk, . . . , Rk] (22)

At time instant n estimated sample is given by following
relationship:

m̂k(n) = HT m̂k(n) (23)

A. Parameter Estimation

The estimation of LPC coefficients and noise variances for
sub-band modulators is necessary for optimized results of
Kalman filter. These parameters of each sub-band are calculated
based on EM algorithm given in [12] and it is given below
breifly:

• Noisy only segment from modulator of sub-band k is
detected, and additive observation noise σ2

k,v is estimated.
• LPC parameters ak,n and variance σ2

k,nmodulator are
calculated for noisy speech modulator.

• Input noise variance is estimated by σk,w =
σk,nmodulator − σ2

k,v
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Fig. 2. Mean Opinion Score for Sub-band Kalman filter (SKF) and Sub-band
Modulator Kalman Filter (SMKF).

• Kalman filter is implemented with noisy parameters, then
enhanced version of modulator is used to estimate ak,n,
iterated until optimal estimate is obtained. In our work,
the number of iteration are 3 as stated in [12].

V. COMPARATIVE PERFORMANCE ANALYSIS

A. Laryngeal Speech

Performance of the system has been tested using female
speech signal sampled at 16 KHz, and corrupted by factory
and engine noise signals with different Signal to Noise Ratio
(SNR) (-10, -5, 0, 5, 10 dB). The number of filters in the filter
bank effects the results, for this work, the number of filter used
are 64 which gave better results in reducing residual noise.
The Kalman filter uses the LPC order p of 10, and window
size and step sizes are 30 and 15 millisecond respectively. This
paper presents the comparison between systems based on MOS
and spectrogram.

1) Mean Opinion Score (MOS): Fig. 2 shows the comparison
of enhanced version speech signal with Sub-band Kalman
Filtering (SKF) and Sub-band Modulator Kalman Filtering
(SMKF) for MOS values. A maximum of 20% improvement
can be observed and SMKF outperforms SKF for all SNR
cases.

2) Spectrogram: Fig.3 and 4 show the spectrogram of speech
signal corrupted by engine noise and factory noise at -10dB
SNR. Although SMKF shows some loss in formants in upper
frequencies but in comparison to SKF, there is less residual
noise in enhanced speech signal. Significant improvement can
be observed in factory noise corrupted speech signal.
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Fig. 3. Spectrogram of noisy and enhanced speech signals by systems(Engine
Noise)

B. Alaryngeal Speech

The E speech vowels \a\, \e\,\i\, \o\, \u\, and
\bodega\have been used for this experiment, which are
recorded from alaryngeal speech rehabilitation center (6
persons) with the sampling frequency of 44100 Hz and down-
sampled to 16000 Hz for computational efficiency.

1) Harmonic to Noise Ratio (HNR): VoiceSauce [43] was
used to calculate HNR, with following settings, fundamental
frequency range: 60 to 120 Hz (E speech fundamental frequency
range is in between 60-120), frame length and overlap was set
to 30 and 15 millisecond respectively and LPC order was set
to 12. Fig. 5 shows the improvement of around 4 dB over the
full-band Kalman filtering [33], [34], and 2 dB over sub-band
Kalman filtering.

VI. CONCLUSION

The modification to sub-band Kalman filtering by applying
Kalman filter to modulators of sub-band by coherent decompo-
sition has been successfully implemented for noisy laryngeal
and alaryngeal speeches (E speech). Results thus obtained
show improvement in speech enhancement while Kalman
filtering is used in modulator domain in comparison to its
traditional use. The improvement in MOS and spectrogram
has shown the system capability of the proposed for reducing
noise from noisy laryngeal speech, and HNR improvement has
confirmed the system performance over the previous methods
for E speech. The future work can be the utilization of other
demodulation process, e.g. non-coherent demodulation and
convex optimization demodulation [36], [44], [45].
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