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ABSTRACT 

 
This paper presents a joint analysis approach to address the 
acoustic feature normalization for robust speech recognition. 
The variations in acoustic environments and speakers are 
the major challenge for speech recognition. The 
conventional normalizations of these two variations are 
separately processed, applying the speaker normalization 
with an assumption of a noise free condition and applying 
the noise compensation with an assumption of speaker 
independency, and thus resulting in a suboptimal 
performance. The proposed joint analysis approach 
simultaneously considers the vocal tract length 
normalization and averaged temporal information of 
cepstral features. In a data-driven manner, the Gaussian 
mixture model is used to estimate the conditional 
parameters in the joint analysis. Experimental results show 
that the proposed approach achieves a substantial 
improvement. 

Index Terms— Joint analysis, vocal tract length 
normalization, speech recognition, feature normalization 
 

1. INTRODUCTION 
 
Variations of acoustic environments and speakers are the 
major challenge in current speech recognition systems [1]–
[4]. Speech recognition systems may work well under a 
clean acoustic environment but their performance degrades 
dramatically in adverse acoustic conditions. To achieve the 
robust speech recognition, many techniques have been 
proposed to address the acoustic mismatch problem in both 
model and feature space while we focus on the feature space 
in this paper. Cepstral mean normalization was used to 
remove the global shift of cepstral features and compensate 
for the main effect of channel distortions [5] and cepstral 
variance normalization was used to compensate the linear 
channel variations in feature analysis [6]. The histogram 
equalization (HEQ) provides a transformation mapping the 
histogram of each feature component onto a reference 
histogram to compensate the noise effect [7]. In order to 
recover the clean speech features, RASTA [8, 9], multiple 
microphones [10] and Kalman filters [11] have common 

been employed for noise robust speech recognition. Among 
the techniques, a simple auto-regression moving-average 
(ARMA) filtering has demonstrated its effectiveness for 
noise reduction by averaging the temporal information [12]–
[14]. Besides the acoustic environment variability, the 
speaker variability also affects the speech recognition 
performance much. To address this problem, the vocal tract 
length normalization (VTLN) algorithm [15] normalizes the 
difference of vocal tract traits between speakers so that the 
extracted acoustic features are robust to variations in vocal 
tract length, and thus the performance of speaker 
independent speech recognition is improved by accounting 
for inter-speaker variability [16]–[18]. 

In general, the VTLN and ARMA are separately 
processed to compensate the speaker variability and noisy 
condition in speech recognition. The acoustic condition is 
assumed to be noise free when VTLN is applied, while 
speaker mismatches are ignored when ARMA is conducted. 
Obviously it is not an optimal way for the estimation. In this 
paper, we propose a joint analysis in feature normalization 
where the vocal tract length normalization and averaged 
temporal information of Mel-frequency cepstral coefficients 
are considered at the same time. The effectiveness of this 
joint analysis in feature normalization has been verified in 
experiments using AURORA 2. In the following, we 
present the proposed joint analysis of VTLN and ARMA in 
Section 2. Section 3 shows experiments in detail. We 
conclude with a summary of findings in Section 4. 
 

2. JOINT ANALYSIS OF VTLN AND ARMA 
 
We investigate a feature extraction method of a joint 
analysis of VTLN and ARMA temporal filtering for speech 
recognition as shown in Fig. 1. Mel-frequency cepstral 
coefficients (MFCCs) are adopted as acoustic features [19]. 
Fast Fourier transform (FFT) is firstly applied to estimate 
the speech spectra, followed by vocal tract length 
normalization, Mel-cepstral analysis and ARMA temporal 
filtering. Based on the Gaussian mixture model (GMM), the 
warping factor of VTLN and the order of ARMA temporal 
filtering are estimated by the maximum likelihood criterion. 
The main contribution of this joint analysis is to normalize 
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speaker and noise factors at the same time. The joint 
analysis is estimated based on the expectation-maximization 
(EM) training algorithm. Finally, acoustic features are 
normalized to zero mean and unity variance using HEQ for 
the higher discrimination ability. The target distribution of 
HEQ is selected as a Gaussian. 
 
2.1. VTLN on the Speaker-Specific Mel Scale 
 
In MFCC feature extraction, the frequency bins are 
smoothed with the perceptually motivated Mel-frequency 
scaling after the log-amplitude of the magnitude spectrum. 
To normalize different vocal tract lengths between speakers, 
the VTLN based on the speaker-specific Mel scale is 
estimated as follows: 

   102595log 1
700
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where the warping factor   is used to adjust a speaker-
specific Mel scale. This frequency-warping procedure is 
implemented as a filter bank modification. 1.0   results in 
a compressed spectrum, 1.0   results in a stretched 
spectrum, and 1.0   is for a non-warped spectrum. Note 
that speech signals of female speakers tend to have shorter 
vocal tract lengths and higher formant frequencies than male 
speakers [17]. One would expect to see more compressed 
spectra in female speech than in male speech. The warping 
factor that maximizes the likelihood of the speech utterance 
is searched in the maximum likelihood (ML) manner, i.e., a 
HMM decoding is required. To reduce the computational 
cost, the HMM decoding can be replaced by a broad-class 
GMM decoding. In this paper, we further simplify the 
VTLN process in the proposed joint analysis method with 
the GMM and the whole utterance is used to estimate the 
warping factor. With the GMM  , the computational cost 
of VTLN is reduced much.  
 
2.2. Auto-regressive Moving Average Filtering 
 
To reduce the noise effect, a non-causal auto-regressive 
moving average filter is used in cepstral feature extraction 
as the moving averages of temporal information defined as: 
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where   is the order of the ARMA filter and c  are cepstral 
coefficients. The ARMA filter is a low-pass filter, 
smoothing out any spikes in the time sequence. A small   
retains the short-time cepstral information but is more 
vulnerable to noises, while a large   makes the processed 
features less corrupted by noises but at the cost of losing 
some short-time cepstral information. There is an inherent 
trade-off to decide the order of the ARMA filter. The order 
of the ARMA filter is empirically selected to fit a corpus or 
an evaluation condition with a fixed value [12]. Unlike 
fixed values of the ARMA estimation, we propose an 
adaptive method to dynamically decide the order   based 
on a joint analysis with the EM estimation. 
 
2.3. Joint Analysis with the EM Estimation 
 
In the proposed joint analysis of VTLN and ARMA, the 
warping factor   of VTLN and the order   of the ARMA 
filter are estimated in a data-driven manner by maximizing 
the likelihood of observation feature vectors ,x  , given the 
GMM  , 
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dx x    is the d-dimensional feature vector 
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  while M 

is set to 64 in this study. The mixture model ,(x | )mp     is a 

normal distribution, with each Gaussian component 
represented by the parameters { , }m m m   , where m  and 

m  are the mean vector and covariance matrix. We view the 

joint analysis as two estimations: One is the joint analysis of 
parameters   and  . The other is the EM estimation for 
updating the GMM parameters,  . The joint analysis of 
parameters   and   is performed for each utterance shown 
in Algorithm 1. The optimized   and   are then used to 
estimate speaker and noise normalized speech feature and 
update the GMM, 1 1{ ,.., ,  ,.., }M Mw w    by an iterative EM 

algorithm. The EM training algorithm consists of an 
expectation step (E-step) and a maximization step (M-step) 
which are iteratively estimated until the equation 
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1
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converges to an optimum, where , ,
1{x ,.., x }N
      denote N 

i.i.d. samples. The K-means algorithm has been applied to 
initialize the parameters 0t   based on 1   and 0  . 

E-step: The data   are assumed to be incomplete and 
the complete data ( , )     are determined by estimating 
the set of variables 1{z ,..,z }M  where zm  is the M-

  

 
Fig. 1.  Joint analysis of VTLN and ARMA. 
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dimensional probability vector. The log likelihoods of 
complete data   are estimated by 
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is the posterior 

probability estimated after t iterations. 
M-step: The parameters 1t   are estimated based on the 

variables zn
m . We obtain 
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Instead of a consecutive optimization by finding optimal   
for a fixed  , subsequently optimizing   for a fixed  , 
we found in experiments that an exhaustive search for both 
parameters that maximize the likelihood can reduce the 
computational cost and give a similar performance. The 
search can be made in the range 0 8   with a step size of 
1 for ARMA filtering, and the range 0.6 1.24   with a 
step size of 0.04 for VTLN. Acoustic features are 
generalized across a variety of noise and speaker variations 
based on the joint analysis. The advantage of this joint 

analysis approach is that it is entirely data driven. Unlike the 
fixed order of the ARMA filter or individual estimation of 
  and  , the joint analysis is an adaptive method to 
dynamically optimize parameters based on the ML 
estimation. 
 

3. EXPERIMENTS 
 
We applied the joint analysis to AURORA 2 database [20]. 
Five signal-to-noise (SNR) conditions were evaluated 
including 5dB, 10dB, 15dB, 20dB and clean. For each SNR 
level, there are eight types of noise extracted from Set A 
and Set B of AURORA 2 database including subway, 
babble, car, exhibition, restaurant, street, airport and train-
station. They are represented as abbreviations N1, N2,..., N8. 
Experiments are reported with the word or phone error rate 
considering insertion, deletion and substitution errors [21]. 
The speech data were decoded via HMM acoustic models 
trained with clean and multi condition data, respectively. 
Each HMM contained five states and the number of 
Gaussian mixture components per state ranged from 2 to 32 
based on the quantity of the training data. Each frame of the 
speech data is represented by a 36-dimensional feature 
vector, consisting of 12 MFCCs, together with their deltas 
and double-deltas. HEQ was applied after the MFCC 
extraction as the baseline. VTLN, ARMA and the proposed 
joint analysis approach (JOINT) were further added to the 
baseline system. For a fair comparison, each of VTLN and 
the ARMA filter was optimized using the same technique as 
the joint optimization proposed in the paper. 
 
3.1. Effects of the Joint Analysis 
 
Fig. 2 shows the performance in multi-condition training 
with all testing data. The averaged word error rate of the 
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Fig. 2.  The proposed joint analysis approach (JOINT) reduces 

the averaged word and phone error rates to 12.50% and 
10.87%, respectively, with a multi-condition training and over 

all testing data (N1~N8). 

Algorithm 1:  Joint analysis of parameters   and   

Step 0. Set the iteration index 0t  and determine the 
optimization function 
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Step 3. Set 1t t  , and Go to Step 1. 
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baseline system (with HEQ) is 15.50% under various noise 
conditions. Compared with the baseline system, the systems 
with VTLN and ARMA achieve relative word error rate 
reductions of 2.91% and 5.31%, respectively. The ARMA 
normalization slightly outperforms the VTLN normalization 
in average. With the proposed joint analysis, the overall 
relative word error rate reduction 19.35% (from 15.50% to 
12.50%) is achieved. The experimental results demonstrate 
that joint analysis approach is a more robust feature 
normalization approach against the mismatch of acoustic 
environments and the difference of vocal tract lengths of 
speakers. 
 
3.2. Different Noisy Environments and Techniques 
 
To investigate the performance under various testing 
conditions in detail, Table 1 summarizes the word accuracy 
of speech recognition systems based on the baseline, VTLN, 
ARMA and the joint analysis (JOINT) under different SNR 
levels, 5dB, 10dB, 15dB, 20dB and clean. The results were 
based on the multi-condition training data. It shows that the 
joint analysis outperforms individual VTLN or ARMA in 
most testing conditions. It is also noted that the joint 
analysis achieves bigger improvements for test Set A 
(N1~N4) than Set B (N5~N8). Since the GMM   was 
estimated with the training data containing the same four 
types of noises as that of test Set A, it is reasonable that the 
joint analysis gives bigger improvements for test Set A than 
test Set B. Identifying a way to enhance the generalization 

capability of the joint analysis in testing conditions with 
unseen types of noises is an interesting task to be further 
explored in the future. 
 
3.3. Multi-Condition and Clean-Condition Training 
 
We made the comparison using multi-condition training and 
clean-condition training (MultiTrain & CleanTrain) data as 
shown in Fig. 3, where the results were the average over the 
test data with different noises. We take into consideration of 
noisy environments in acoustic model training. Several 
observations can be found. The joint analysis shows a better 
performance while the performance gap between the joint 
analysis and other approaches is much more noticeable 
under the low SNR conditions. The multi-condition training 
generally outperforms the clean-condition training under the 
low SNR conditions. In addition, the proposed joint analysis 
approach has achieved the lowest word error rates under 
both multiple and clean training conditions. 
 

4. CONCLUSION 
 
We have investigated a robust feature normalization method 
for speech recognition based on the joint analysis of vocal 
tract length normalization and averaged temporal 
information of spectral features. To alleviate mismatches of 
speakers and noise environments and to avoid suboptimal 
parameter estimations with separated VTLN and ARMA 
processes, the joint analysis approximates the bias between 
clean and noisy speech and the different vocal tract lengths 
of speakers based on the GMM which is estimated by the 
EM training algorithm under the ML criterion. Experimental 
results confirm that the proposed joint analysis approach 
can give an obvious performance improvement. The 
averaged relative word error rate reduction over the baseline 
is 19.35% under various training and testing conditions. 
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Fig. 3.  Word error rates (%) of different SNRs using multi- 
and clean- condition training data. 

Table 1.  Word recognition accuracy (%) of the baseline, 
VTLN, ARMA, and the proposed joint analysis (JOINT) in 

different SNR levels and with noisy types 

SNR Approach 
Noise Type 

N1 N2 N3 N4 N5 N6 N7 N8 avg.

5dB 

Baseline 75.30 74.70 76.60 76.70 73.80 75.70 76.70 75.70 75.65

VTLN 71.40 75.70 77.80 76.50 73.50 76.40 77.90 75.70 75.61

ARMA 80.60 75.60 77.40 77.30 74.20 75.90 77.30 76.40 76.84

JOINT 82.90 81.70 83.00 79.80 73.80 76.20 79.80 77.30 79.31

10dB 

Baseline 83.60 82.30 83.10 83.60 81.30 82.80 82.50 82.90 82.76

VTLN 84.00 83.40 83.70 84.50 83.00 82.70 83.60 83.70 83.58

ARMA 85.00 83.80 84.70 84.60 81.30 84.30 84.30 84.40 84.05

JOINT 86.10 88.10 87.10 86.90 82.50 82.70 84.60 82.70 85.09

15dB 

Baseline 86.10 85.60 85.60 86.80 85.80 86.20 86.30 87.20 86.20

VTLN 86.60 87.10 86.20 88.10 87.70 86.30 86.90 86.90 86.98

ARMA 87.40 86.70 87.90 87.30 87.20 86.50 87.10 88.30 87.30

JOINT 88.60 89.40 89.20 89.60 86.50 85.30 86.10 87.80 87.81

20dB 

Baseline 87.70 88.00 88.40 87.50 87.50 88.70 87.10 88.60 87.94

VTLN 89.20 89.40 88.10 89.00 89.30 88.90 88.10 87.90 88.74

ARMA 89.40 89.50 88.60 88.50 89.40 89.30 89.50 89.90 89.26

JOINT 89.30 91.80 90.10 90.80 88.50 87.40 89.30 88.00 89.40

clean 

Baseline 87.70 88.50 87.20 89.00 87.70 88.50 87.20 89.00 88.10

VTLN 88.40 89.30 88.10 89.10 88.40 89.30 88.10 89.10 88.73

ARMA 89.00 89.80 88.80 89.60 89.00 89.80 88.80 89.60 89.30

JOINT 91.40 91.90 91.90 92.50 88.10 87.50 88.20 87.60 89.89
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