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ABSTRACT
In this work we present a new feature extraction method that
is robust against the effects of varying vocal tract lengths.
The principle of the method is based on invariant integration
and makes use of a modulation filtering approach, similar to
the recently proposed scattering transform. In particular, we
show how the transform can be used to obtain features that are
robust against variations of the vocal tract length. Phoneme
recognition experiments show a clearly increased robustness
in case of mismatching average vocal tract lengths.

Index Terms— Automatic speech recognition, feature ex-
traction, robustness, speaker-independence

1. INTRODUCTION

Systems for automatic speech recognition (ASR) have to cope
with various sources of variability [1]. Among the inter-
speaker variabilities, the vocal tract length (VTL) is one major
factor, which has led to different vocal tract length normal-
ization (VTLN) techniques, with frequency warping during
the feature extraction being one of these [2, 3]. Another com-
mon method to compensate for the effects of different VTLs
tries to adapt the acoustic models of the recognition system
to the speaker-specific characteristics. Maximum-likelihood
linear regression (MLLR) [4] is a typically used method for
this approach. Instead of normalizing the features or adapting
the acoustic models, a third approach is to extract features
that are independent of the effects of different VTLs. Based
on an acoustic tube model, the dependency between the res-
onance frequencies Fi and length l of the tube is given by
Fi = c

4l (2i − 1), i = 1, 2, 3, . . ., where c is the speed of
sound [5]. Accordingly, it follows that the spectra SA, SB
from two speakers A and B that utter the same phone are
related by a frequency warping of the form

SA(ω) = SB(αω). (1)

While VTLN methods typically estimate the warping factor α,
invariant feature extraction methods try to compute features
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that yield the same feature values for different α. As an ex-
ample, the work in [6] made use of the scale transform [7],
which leads to coefficient magnitudes that are independent of
the warping factor.

Auditory filterbanks that are commonly used within the
field of ASR locate the center frequencies of their filters lin-
early spaced along (quasi-) logarithmic frequency scales. The
relation from (1) then becomes

SA(logω) = SB(logα+ logω), (2)

meaning that frequency warping results in a translation along
the log-frequency axis. Various feature extraction methods
that are invariant to translations were proposed in the recent
years [8, 9, 10, 11]. Among these, the invariant-integration
features (IIF) [11] have shown superior robustness against the
effects of varying VTLs while keeping highest accuracies in
ASR. For a given transformation group, the central idea of
invariant integration is to compute group averages of nonlinear
functions of the input data. For a finite group, as considered in
case of the IIFs, it was shown that the use of monomials as non-
linear functions up to a certain order leads to high accuracies
in matching as well as in mismatching training-test conditions
with respect to the average VTL in each dataset. In general,
arbitrary (possibly) nonlinear functions can be used instead of
monomials to achieve invariance to the considered transforma-
tion group. The separability of the classes of interest, however,
has to be evaluated for each specific application.

Recently, the scattering transform has been introduced, and
a link to MFCCs has been provided [12]. Given an input signal,
the scattering transform computes co-occurrence coefficients
for multiple scales that result from cascaded filterbanks. The
process is quite similar to a cascaded computation of mod-
ulation spectra as in [13], but uses different filters. After a
lowpass filtering of modulation spectra, one obtains coeffi-
cients (features) that are translation-invariant up to a certain
degree. Under certain conditions on the filterbank, it becomes
possible to fully recover the input signal from the coefficients
[12], at least up to a global translation.

7427978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Input
signal

Gammatone
filterbank

Power
normalization

Power-law
nonlinearity

Modulation analy-
sis in subband-
index domain

Features

Fig. 1. Processing scheme for feature computation.

In this work, we present a method that follows the idea of
invariant integration to achieve vocal tract length invariance.
In contrast to previous works that used monomials, a modula-
tion filtering approach, similar to the scattering transform, but
without the strict derivation of filters from a mother wavelet as
in [12], is used. Different from [12, 13], the modulation filter-
ing is not carried out with respect to time, but with respect to
the subband index in a gammatone filterbank analysis. In the
following section, the feature extraction is described. We show
how the scattering transform fits into the scheme of invariant
integration and discuss implementation aspects. The proposed
method is evaluated in Section 3. Conclusions and an outlook
on future work are given in the last section.

2. MULTISCALE MODULATION ANALYSIS FOR
ROBUST FEATURE EXTRACTION

2.1. Overall Extraction Scheme

The proposed feature extraction method makes use of a re-
peated modulation-filter analysis (similar to the scattering
transform) to compute features that are robust against the
effects of different VTLs. An overview of the proposed feature
extraction approach that we call “scale-translation invariant
features” (STIF) in the following is given in Fig. 1. As done
for the extraction of IIFs, the first step for the computation
of the features involves a time-frequency (TF) analysis. This
is done with a gammatone filterbank in this work, with cen-
ter frequencies of the filters equally spaced on the equivalent
rectangular bandwidth (ERB) scale [14].

Let sn(k) denote the magnitude of the gammatone-filter
based TF representation of a speech signal, where n is the
time index with 1 ≤ n ≤ N , and k is the subband index with
1 ≤ k ≤ K. Since the ERB scale is almost logarithmic, the
translation in (2) approximately results in a shift of the subband
indices: sn(k)→ sn(k+ kα) with some kα depending on the
warping factor α and kα not necessarily being an integer. Thus,
the spectral effects due to different VTLs can be modelled as a
finite group G of translations along the subband index space of
a time-frequency analysis with logarithmically spaced filters,
which is nearly the case for the above mentioned gammatone

0 1
2π

π 3
2π

2π
0

0.5

1

Angular frequency ω

|H
(ω

)|

Fig. 2. Magnitudes of the lowpass (dashed) and band-
pass (solid) filters of the frequency responses of hj(k), j =
0, . . . , 4.

filterbank. Now let a frame for a time index n be given by
sn = (sn(1), sn(2), . . . , sn(K)). According to the principle
of invariant integration [15], features that are invariant with
respect to the group G can be computed with

Tf (sn) =
1

|G|
∑
g∈G

f (gsn) , (3)

where f(·) is a kernel function with the frames of the TF rep-
resentation as input. One way for obtaining a transformation

T (sn) = (Tf1(sn) , Tf2(sn) , . . . , TfF (sn))
> (4)

that is complete in the sense that it is only invariant to the
group G and no other operation, is to consider only monomials
for the kernel functions [15]. This choice was made for the
IIFs in [11]. The modulation analysis considered in this work
can be seen as another kind of nonlinear kernel function that
is used instead of monomials.

2.2. Cascaded Modulation Analysis

In this work, we propose to use a set of bandpass filters com-
bined with the modulus operator as kernel functions. The
integration over the group G from (3) is realized with a finite
impulse response (FIR) lowpass filter h0(k) of length 16. We
designed J = 4 complex, nearly analytic FIR bandpass filters
hj(k), 1 ≤ j ≤ J . The bandpass filters approximately have a
constant-Q characteristic, as far as the short filter length and
the fact that filters are supposed to be analytic permits. Further-
more, all bandpass filters have a zero mean. The magnitudes
of the frequency responses are shown in Fig. 2.

After normalization and power-law compression, the val-
ues of each frame are processed by bandpass filters, the nonlin-
ear modulus operator, and the lowpass filter, as illustrated
in Fig. 3. Importantly, these filter operations are carried
out with respect to the subband index k, and not the time
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Fig. 3. Two stages of the processing scheme.

index n. In each stage of the cascade, the input signal is
passed to a lowpass filter h0(k) as well as to J bandpass
filters h1(k), . . . , hJ(k). The lowpass output is downsam-
pled by a factor N0 leading to the signal dn,0(m). It forms
the first part of the feature vector. The signals that were fil-
tered with the bandpass filters hj(k) are passed to the mod-
ulus operator and downsampled by a factor Nj afterwards,
which leads to the signals dn,1(m), . . . , dn,J(m). First-order
scattering coefficients are computed by lowpass filtering and
downsampling these signals and by concatenating the resulting
signals to the feature vector. Higher-order scattering coeffi-
cients are obtained by iterating this scheme: For example,
second-order coefficients are obtained by passing each of the
signals dn,1(m), . . . , dn,J(m) to the filters h1(k), . . . , hJ(k),
followed by applying the modulus operator and by downsam-
pling and so on. As mentioned in [12] and proved in [16], the
energy of the scattering coefficients of order q decreases to
zero as q increases if the filterbank has a certain contractive be-
havior. However, for the filters used in this work, this property
does not exactly hold.

The number of extracted features for a given input signal
depends on the length of the input signal, the lengths of the
filters, the number of stages, the downsampling rate between
the individual stages of the transform, and the selected sub-
set of coefficients. Given 26 spectral input coefficients for a
given time frame, in our implementation, the dimensionality
of the feature vectors ranges between 30 and 270 features,
depending on the scattering order and downsampling factors.
In order to reduce the dimensionality and to better fulfill the
assumptions made by diagonal covariance modeling in the rec-
ognizer, the resulting features together with the corresponding
dynamic features were passed to a linear discriminant anal-
ysis (LDA) followed by a maximum-likelihood linear trans-
form (MLLT) [17]. Since a specific selection of individual
features has proved beneficial in comparison to a linear trans-
form like the LDA in various application (see, e.g., [11, 18]),
we also evaluated the performance of the proposed features in
combination with the general feature selection approach that
was used in [11].

3. EXPERIMENTS

3.1. Data and Setup

In a first step, experiments were conducted on the TIMIT cor-
pus with a sampling rate of 16 kHz. The SA sentences were
excluded. The training and test sets consisted of 3696 and
1344 utterances from female and male speakers, respectively.
To evaluate the robustness of the proposed features against
mismatching average vocal tract lengths in training and test
data, two training-test scenarios were defined: The match-
ing scenario used the standard training and test sets, which
contain female as well as male utterances. The mismatching
scenario used only the utterances from male adults of the orig-
inal training set and only the utterances from female adults of
the original test set for training and testing, respectively.

For comparison, standard MFCC features were computed
which consist of 12 cepstral coefficients concatenated with the
log-energy feature and the corresponding dynamic features,
so that, overall, MFCC feature vectors consisted of 39 com-
ponents in total. Furthermore, 30 IIFs were computed with
parameters that led to highest accuracies in [11]. For another
baseline, cepstral coefficients were computed based on a 26-
channel gammatone filterbank with a minimum center fre-
quency of 100 Hz and a maximum center frequency of 7800 Hz.
The frame length was set to 20 ms, and a frame shift of 10 ms
was chosen. Moreover, a power-function nonlinearity with an
exponent of 0.1 was applied on the spectral values in order to
resemble the nonlinear compression found in the human audi-
tory system. This filterbank was also used for the extraction of
the features that are based on the nonlinear feature transform
as proposed in this work.

Phone recognition experiments were conducted with a rec-
ognizer that is based on HTK [19]. State-clustered, cross-word
triphone models with diagonal covariance modeling were used.
The acoustic models had three emitting states with a left-to-
right topology. Depending on the amount of available training
data, up to 16 mixtures were used for the Gaussian mixture
models. A bigram language model based on the TIMIT train-
ing data was used. For the evaluation of the recognition ac-
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Table 1. Baseline accuracies [%] for mel frequency cepstral
coefficients (MFCC), gammatone cepstral coefficients (GTCC)
and invariant-integration features (IIF) on TIMIT for matching
and mismatching training-test conditions.

Features matching mismatching
MFCC 73.2 56.0
GTCC 73.4 54.3
IIF 75.5 61.4

curacies, the final recognition results were folded to 39 final
classes [20]. To concentrate on the properties of the feature
vectors, no VTLN or MLLR were applied within the ASR
systems in this work.

For the invariant feature types, an LDA followed by an
MLLT was used to reduce the number of dimensions to 55 and
to decorrelate the features.

3.2. Baseline Accuracies

The baseline accuracies with the described ASR system are
shown in Table 1. It can be seen that the commonly used
MFCC features yield a similar performance in case of match-
ing training-test conditions compared to gammatone cepstral
coefficients (GTCC). For the mismatching training-test sce-
nario, in which the average VTL is different in the training
and the test set, the accuracies of both MFCC and GTCC
decrease by around 18 percentage points with the MFCCs
having a slightly higher accuracy. In the matching as well as
the mismatching training-test scenario, the IIFs yield a higher
accuracy than the MFCC and GTCC features. While the ac-
curacy is about two percentage points higher for the matching
scenario, for the mismatching scenario the IIFs show a much
higher robustness against varying VTLs and perform around
five percentage points better than MFCCs.

3.3. Experiments with Extracted Features

We considered scattering coefficients of up to third order
within our experiments. In the first part of the experiments, we
computed STIF coefficients as described in Section 2.2 and
added information about the temporal context by means of
conventional delta features as commonly used. The resulting
accuracies for these features are shown in the first three lines
of Table 2. With respect to the matching scenario, which con-
sists of the standard training and test sets of TIMIT, it can be
seen that the accuracy of the STIF coefficients with maximum
order of one yield the highest accuracy in comparison to the
STIF coefficients of higher order. When looking at the accu-
racies for the mismatching scenario, however, the accuracies
increase with increasing maximum coefficient order. While
the accuracy for coefficients up to order one is comparable to

Table 2. Accuracies [%] for features based on scattering trans-
form for the TIMIT corpus with the maximum scale indicated
as subscript.

Features matching mismatching
STIF1 72.3 55.4
STIF2 71.4 58.7
STIF3 70.6 61.6
STIF3,selected 73.2 65.5

that of the MFCC and GTCC features, the STIF coefficients
up to order three achieve an accuracy that is similar to the one
of the IIFs.

In the second part of the experiments we used the feature
selection method as used in [11] to select STIF coefficients
from within a temporal window of length 130 ms as final
feature vector. 30 STIF coefficients up to order three were
considered during the selection, amended by delta features,
and reduced to 55 features by an LDA. The results for this
experiments are shown in the last line of Table 2. For both
training-test scenarios, an increase in accuracy can be observed.
While the accuracy for the matching scenario reaches that of
the MFCC and GTCC features, the STIF coefficients with
maximum order of three show an accuracy for the mismatching
scenario that is even more than four percentage points higher
than the corresponding accuracy for IIFs. This shows that the
proposed feature extraction process yields features that are
extremely robust against mismatches in vocal tract length.

4. CONCLUSIONS

In this work we have proposed a new method for the extraction
of robust features with respect to the VTL as variability. The
method is based on the idea of invariant integration and makes
use of a scattering operator to describe the spectral character-
istics of individual phonemes. Two training-testing scenarios
for phone recognition on the TIMIT corpus were considered
to evaluate the robustness of the features for matching as well
as for mismatching average VTLs. The experiments showed
that for a matching scenario, the features achieve accuracies
that are comparable to those of MFCC and GTCC features.
The robustness of the proposed extraction method against the
effects of varying VTLs is clearly shown with the mismatch-
ing scenario. The resulting accuracy of the proposed features
is about ten percentage points higher than for MFCCs and
four percentage points higher than for the recently presented
IIFs. Future work will further investigate the optimization of
the filterbank. Furthermore, the performance of the proposed
method on larger tasks and in combination with normalization
and adaptation methods will be investigated.
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