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ABSTRACT

Extending previous work on prediction of phoneme recognition er-
ror from unlabeled data that were corrupted by unpredictable factors,
the current work investigates a simple but effective method of esti-
mating ASR performance by computing a function M(∆t), which
represents the mean distance between speech feature vectors eval-
uated over certain finite time interval, determined as a function of
temporal distance ∆t between the vectors. It is shown that M(∆t)
is a function of signal-to-noise ratio of speech signal. Comparing
M(∆t) curves, derived on data used for training of the classifier, and
on test utterances, allows for predicting error on the test data. An-
other interesting observation is that M(∆t) remains approximately
constant, as temporal separation ∆t exceeds certain critical inter-
val (about 200 ms), indicating the extent of coarticulation in speech
sounds.

Index Terms— error-rate prediction on unknown data, phoneme
classification, automatic recognition of speech

1. INTRODUCTION

In many practical applications, it would be very useful to be able to
predict the classifier performance on unknown test data even when
the answers are not known a priori. We propose that this may be pos-
sible and are encouraged by the fact that human listeners and some
higher-level animals demonstrate this ability ([1][2]). Some of our
prior work [3][4] approached this problem by comparing statistics of
instantaneous estimates of posterior probabilities of speech sounds
(estimated by trained artificial neural net (ANN)) derived on train-
ing data and in the test. In this work we propose application of one
temporal-domain technique, that we previously used for estimating
length of information-bearing element in speech [5], for predicting
error rates of phoneme recognizer in unseen noisy environments.

The next section reviews related previous work. Subsequent sec-
tion describes the proposed technique. Application of the technique
using two types of features, the conventional PLP cepstral features,
and the data-derived posterior features, is discussed next. The last
section discusses the results and concludes our findings.

The research presented in this paper was partially funded by the DARPA
RATS program under D10PC20015, and the JHU Human Language Tech-
nology Center of Excellence. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA or the JHU HLTCOE.
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Fig. 1: Cartoon illustration of coding of information in speech and
its effect on the mean temporal distanceM(∆t) of Eq.1. a) Idealized
situation b) Coarticulated units c) Effect of stationary corruptions of
the signal

2. RELATED PREVIOUS WORKS

2.1. Predicting error in recognition

The fundamental premise is that the ASR system can never work bet-
ter than it does on the data on which it was trained. In this ideal
situation, the data that the system encounters during its operation
come from the same distribution as do the data on which the system
was trained and the system is at its best.

Earlier works in predicting test error ([3][6][7][4]) proposed
comparison of a second order statisticAC = 1/T

∑T
i=1 P (j)P (j)′

where P (j) is a vector of 10th root-compressed phoneme pos-
teriors, and T indicates the time span over which the statistic is
evaluated. The basic premise is that a classifier is at its best when
applied to its training data. Deviations from stochastic regularities
derived from the training data degrade its performance. There-
fore, large divergence between these two statistics indicate possible
degradation of the classifier performance. Divergence, between
statistics derived on training data and segments of the test data,
MSD = divergence(ACtrain, ACtest) then indicates how far
the test data deviate from the train data. Several measures of di-
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vergence were investigated and were shown to correlate with the
observed recognition accuracies [7][4]. Subsequently, they were
applied in adapting multi-stream phoneme recognizer to previously
unobserved noise in the test data.

The current technique utilizes temporal properties of speech,
as consisting of sequences of information-bearing speech sounds,
expressed in speech features. This differentiates it from earlier ap-
proaches, which used statistics of instantaneous classifier output.

3. PROPOSED PERFORMANCE MONITORING
TECHNIQUE

abelsec:proposed

3.1. Coding message in speech as reflected in M(∆t)

Speech messages are coded in sequences of speech sounds 1 . A rea-
sonable assumption is that feature vectors describing the speech sig-
nal should be similar within each sound and different across sounds.
Some time ago [5] we were interested in deriving a typical extent of
sound coarticulation and proposed a measure that evaluated a mean
temporal distance of features over some interval as a function of
time-span ∆t between two feature vectors in running speech,

M(∆t) =

∑T−∆t
i=1 D(Pt, Pt+∆t)

T −∆t
(1)

where D is distance between two feature vectors Pt and Pt+∆t.
Notice that there is no need for labelled data and no need for

knowing what the sounds are. The technique is applied directly on
any non labelled and/or non transcribed data.

It turns out that, besides evaluating average extent of the sounds,
this measure could be also used to evaluate how similar or different
(in average) these sounds are. For high quality speech, the sounds are
sufficiently different. When the speech gets corrupted by stationary
or slowly varying distortions, these distortions start dominating the
signal and the sounds become more similar.

The situation is illustrated in Fig.1. The upper part of the fig-
ure illustrates an idealized situation where feature vectors in each
sound are stationary and all sounds are of equal lengths. TheM(∆t)
increases linearly up to ∆sound, which indicates the length of the
sound, and then it stays constant at the value of average divergence
between speech sounds. In reality, illustrated in the middle part of
Fig1, the feature vectors are not stationary but gradually change due
to coarticulation in speech production, and the sounds might be of
different lengths. Still, the M(∆t) increases gradually with ∆t up
to the ∆tcritical, which indicates the longest time span for which
the two feature vectors are guaranteed to be coming from different
sounds, i.e. the longest extent of sound coarticulation. M(∆t) may
exhibit a peak at ∆tunit, which is the average time span between
unit centers, when features in different units are in average most dis-
similar to each other.

3.2. The effect of signal distortions

The particular shape of M(∆t) is dependent on many factors that
characterize the data. Most relevant for our current application is
that stationary distortions of the signal make all speech units more

1We intentionally avoid here the term ”phoneme” or ”phone”. Our mea-
sure merely indicates the presence or absence of structure in the signal that
could bear an information. An assumption is that there is are a number of dif-
ferent similar-length interleaved information-carrying sounds. Our measure
evaluates their difference in a given feature space and estimates their extent.
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(a) Mplp(∆t) : PLP cepstra computed using Euclidean distance
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(b) Mpost(∆t) : Phone Posterior Vectors computed symmetric KL diver-
gence

Fig. 2: M(∆t) curves for in Babble noise at 5 different SNRs, along
with variance, using two different MTD formulations

similar to each other, impairing information-bearing capacity of the
speech sounds. Diminished differences in speech sounds show in
decreased values of M(∆t).

3.3. The effect of different feature representations

With an appropriate divergence measure, M(∆t) can be computed
using any feature representation of speech. The upper part of Fig.2
shows means and variances of M(∆t) curves computed from in-
dividual TIMIT sentences using PLP features with Euclidean dis-
tance. The lower part of the Fig.2 shows the similar curves but
M(∆t) computed using phoneme posterior features with symmet-
ric Kullback-Leibler distance.

To facilitate the comparison, the curves were normalized with
respect to their values at ∆t = 200ms in clean conditions. As appar-
ent, PLP-derived curves exhibit peaks at around 70 ms, which corre-
sponds to average spacing between center of neighboring phonemes
in the TIMIT data, and they flatten at approximately constant value
after about ∆t > 200ms, indicating the main effect of phoneme
coarticulation in the TIMIT data. The posterior-derived curves do
not exhibit the peak at the average phoneme center spacing. This
can be understood since the artificial neural net classifier applied in
this experiment was trained to deliver similar features through the
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whole length of a phoneme.

3.4. Predicting classifier performance

As implied above, evaluating appropriate elements ofM(∆t) allows
for estimating level of speech distortion, and comparing the M(∆t)
curves for different data may indicate differences in distortions in
the data. In particular, the maxima of M(∆t) are proportional to
the SNR of the signal, with an offset depending on the type of noise.
Following the discussion in Sec.2.1, differences in M(∆t) derived
from the training and the test data could predict recognition accuracy.

Evaluation of appropriate segment of M(∆t) curves yields the
measure µ, which indicates how well the data is structured into dif-
ferent segments, which for speech could be speech sounds, related
to phonemes of language.

In our case here, the sum of the curve in the region
∆t ∈< 200ms, 800ms > i.e.,

µ =

800ms∑
∆t=200ms

M(∆t)., (2)

indicates level of noise in the given speech data. Further, the relative
difference between µtest, derived on a segment of the test data, and
µtrain, derived on the entire training data, (µtrain − µtest)/µtrain

predicts the degradation in performance due to noise.

4. EXPERIMENTAL RESULTS

Experiments done using a phoneme recognition system, trained on
the TIMIT database, indicate performance of measure, M , in pre-
dicting error increase due to noise. Details of the experimental setup
are available in [4]. Recognition error of this phoneme recognition
system was measured on the test set of TIMIT database, consist-
ing of 1344 utterances from 168 speakers, corrupted with a vari-
ety of noises from NOISEX-92 database [8]. The interval T used
in M(∆t) computation was, length of the entire training set for
Mtrain(∆t) and length of each TIMIT sentence, for Mtest(∆t).

4.1. Correlations between predicted performance and relative
increase in error of the recognition

As the noise level increases, the error also increases. Relative in-
creases in error plotted against the relative changes in distortion mea-
sure, for two different noise conditions (babble noise and bucca-
neer(I) noise), at varying signal-to-noise ratios, are shown in Fig.
3,4 and 5. Red, blue and green colors are used to represent data
corresponding to babble noise, buccaneer(I) noise and the reference
clean condition.

The ellipses indicate the contour (at level 0.2) of the Gaussian
fit to data for the each condition, while the centres denote the mean
values. For representational convenience, the relative changes in the
distortion measure were scaled by the standard deviation across all
conditions, for each measure.

Cross-correlation coefficients were computed between the µ
measured for each utterance and the corresponding phoneme error,
across 11 different noise conditions, including clean condition, for a
total of 14,784 utterances (11*1344). These cross-correlation values
are 0.77 for µplp and 0.84 for µpost. For a comparison, results
using the earlier proposed measure [4], denoted here as µSD are
also shown.

As seen, while all measures increase with increasing noise lev-
els, µpost is the least sensitive to the type of the noise, and yields
highest correlation with observed phoneme errors.
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Fig. 3: Relative changes in the single-frame correlation based error
prediction measure [4] vs sentence-level phoneme error for babble
and buccaneer noises (NOISEX database) at SNRs 0dB, 5dB, 10
dB, 15 dB, 20dB
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Fig. 4: Relative changes in the PLP-based error prediction mea-
sure S vs in sentence-level phoneme error for babble and buccaneer
noises (NOISEX database) at SNRs 0dB, 5dB, 10 dB, 15 dB, 20dB

4.2. Effect of the time interval for the estimation

In order to use M(∆t) in speech processing applications, it is de-
sirable to derive a good estimate using a small portion of the speech
segment. In order to understand the effect of the estimation interval
on the estimate, TIMIT sentences were divided into groups of less
than 2 s long (1452 sentences), 2-3 s long (6468 sentences), 3-4 s
long (4609 sentences) and greater than 4 s (2255 sentences) and the
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Fig. 5: Relative changes in the posterior-based error prediction mea-
sure S vs relative increase in sentence-level phoneme error for bab-
ble and buccaneer noises (NOISEX database) at SNRs 0dB, 5dB, 10
dB, 15 dB, 20dB

correlation coefficient was computed for each group. These correla-
tions are shown in the bar plot in Fig. 6 As expected, the correlations
increase with the length of the sentence.

The Mplp(∆t) measure has the weakest correlation among the
three measures compared here. However, it does not require estima-
tion posterior probabilities of phonemes, is much easier to compute,
and we assume it would be less sensitive to factors such as language,
which influence the posterior estimation process. Further it can be
readily used in applications where posteriors are not available.
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Fig. 6: Correlation between several performance prediction methods
(Statistical Divergence [4], Mplp(∆t) and Mpost(∆t) and recogni-
tion error for different of utterance lengths.

The posterior based prediction was applied for stream selec-
tion in a multi stream recognition system described elsewhere [9],
where it has shown substantial improvement in recognition accu-
racy in phoneme recognition on noisy data. These automatically
obtained results compared well with the best possible “cheating” re-

sults, where the most reliable streams were selected by a ”human-in-
the-loop”, who knew the correct answers in advance.

5. DISCUSSION AND CONCLUSIONS

Mplp(∆t) derived from PLP cepstra, peaks at about average
phoneme length (around 70 ms between centers of phonemes) and
stays approximately constant after about 200 ms. This observation
supports the notion speech is composed of sequences of phonemes
spaced roughly 70 ms apart, overlapping with their immediate neigh-
bors. The 200 ms duration signifies extent after which the longest
phoneme ceases to influence its neighboring phonemes. Mpost(∆t)
computed from phoneme posterior features does not exhibit a peak
at phoneme center time span because posterior features are trained
to be constant over the phoneme lengths. Value of M(∆t) for
longer time-spans (∆t > 200ms) decreases with decreasing SNR
as stationary distortions dominate the signal and feature vector val-
ues, making these vectors more similar. As a result, the divergence
values among these feature vectors decrease. Thus M(∆t) appears
to be a good predictor of error rate of phoneme classifier that was
trained on clean data.
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