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ABSTRACT 

 

Detection of automatic speech recognition (ASR) errors is 

crucial to preventing their further propagation through 

statistical machine translation (SMT) in conversational 

spoken language translation (CSLT) systems. In this paper, 

we venture beyond traditional features obtained from the 

ASR decoder and hypothesized word sequence, and explore 

additional information streams provided by an error-robust 

CSLT system, including SMT confidence estimates and 

posteriors from named entity detection (NED). Another 

significant novelty of this work is the use of an automated 

word boundary detector based on acoustic-prosodic features 

to verify the existence of ASR-hypothesized word 

boundaries, which further improves ASR error detection. 

Offline evaluation on a test set designed to invoke ASR 

errors showed that at 10% false alarm rate, the proposed 

features provide 2.8% absolute (4.2% relative) improvement 

in detection rate over a state-of-the-art baseline error 

detector that uses a rich set of features traditionally 

employed in the existing literature. 

 

Index Terms— automatic speech recognition, ASR 

error detection, conversational speech translation, SMT 

confidence estimation, word boundary detection 

 

1. INTRODUCTION 

 

Conversational spoken language translation (CSLT) systems  

use automatic speech recognition (ASR) to transcribe input 

speech into a sequence of hypothesized words, which are 

processed  by a statistical machine translation (SMT) 

system. An optional text-to-speech (TTS) engine renders the 

translated SMT output as speech. This pipeline propagates 

ASR errors in the initial stage, often producing 

incomprehensible output in the target language [1]. Thus, 

identifying ASR errors and taking corrective action to 

prevent their downstream propagation is crucial to 

preserving the speaker’s intended meaning and alleviating 

problems with the communication flow. 

Spontaneous conversational speech presents numerous 

challenges, including out-of-vocabulary (OOV) words, 

speech repairs, phonetic/linguistic confusability, and related 

issues that cause problems for even the best ASR systems. 

Even so, the knowledge that errors are present can help the 

system take action to rectify or reduce the impact of the 

problem. For example, it may prompt the user to confirm or 

rephrase segments which it thinks may contain ASR errors. 

This paper focuses on automatic detection of ASR 

errors in the context of an interactive, error-robust English-

Iraqi Arabic CSLT system. In addition to the standard 

pipeline (ASR  SMT  TTS), the system contains built-in 

error detection modules that pinpoint regions in the input 

where ASR and SMT are likely to fail, including an SMT 

confidence estimator and named-entity detector (NED), 

whose predictions are used to augment an existing set of 

features traditionally used for ASR error/OOV detection. 

In a significant departure from the existing literature, we 

leverage signal-level information for ASR error detection by 

using acoustic-prosodic features to verify word boundaries 

hypothesized by the ASR system. This word boundary 

detector allows us to identify misplaced boundaries due to 

insertion, substitution, and deletion errors, and is used as an 

additional feature for ASR error detection. 

 

2. RELATION TO PRIOR WORK 

 

Existing ASR error detection approaches usually focus on 

features generated from the ASR decoder, such as word 

posteriors, phonetic acoustic scores, language model (LM) 

scores, confusion network density, and sub-word to word 

comparisons [e.g., 2, 3-6]. Features generated from the 

hypothesized word sequence, such as n-grams, parts of 
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speech, syntactic, semantic, and even discourse-level 

features [e.g., 7, 8-11], are commonly employed. 

The novelty of our approach stems from the 

incorporation of additional feature streams provided by 

multiple non-ASR components in our CSLT system. 

Another significant contribution of this paper is the finding 

that word boundary verification using signal-level acoustic-

prosodic features further improves ASR error detection 

performance over a strong baseline system. 

 

3. BASELINE ERROR DETECTOR 

 

Baseline speech recognition is based on the BBN Byblos 

ASR system [12]. The acoustic model (AM) was trained on 

approximately 200 hours of transcribed English speech 

(129K segmented utterances) from the DARPA TransTac 

two-way spoken dialogue collections covering various 

domains, including force protection (e.g., checkpoint, 

reconnaissance, and patrol), medical diagnosis and aid, 

maintenance, infrastructure, etc. The LM was trained on 

5.8M English sentences (60M words), drawn from both in-

domain and out-of-domain sources. LM and decoding 

parameters were tuned on a held-out development set of 

3,534 utterances (45K words). We obtained 11% WER on a 

held-out test set of 3,138 utterances (38k words). Besides 1-

best hypotheses, the decoder also generates confusion 

networks (word graphs) from the decoding lattice. 

 

3.1. Training and Evaluation Data for Error Detection 

We employed the jack-knifing technique to generate a large 

training corpus for the ASR error detector. We divided the 

200 hours of English speech with reference transcriptions 

into ten equal partitions. Each partition was decoded with an 

LM that left out transcriptions for that partition (ten different 

LMs were trained, one for each partition). The global 

baseline AM was used for decoding all partitions. ASR 

errors were elicited in each partition by excluding singleton 

words in that partition from the corresponding decoding 

lexicon and LM. Word-level reference error labels were 

generated for the entire training set (combining all jack-knife 

partitions) by automatically aligning the ASR hypotheses 

with corresponding reference transcriptions. Since ASR 

errors are often “bursty”, we use the so-called BI encoding 

for the reference labels – the first mis-recognized word is 

labeled “BERROR” for “beginning of error”, and all the 

following consecutive errors are labeled “ERROR”. 

Besides the jack-knifed training set, we created held-out 

development and test sets designed to cause various types of 

ASR errors. For instance, the two sets are rich in previously 

unseen OOV names and non-names. They also contained 

phonetically confusable words (homophones), as well as 

mispronunciations and fragments. We emphasize that our 

ASR error-detection evaluation framework mirrors a real-

world scenario where OOV words and other ASR errors are 

not simulated (e.g., by holding them out of the ASR 

lexicon/LM), but are completely unknown to and previously 

unobserved by the system. The overall OOV and ASR error 

rates for our training, development, and test sets are 

summarized in Table 1. 

Table 1. OOV rates and WER for training & evaluation data 

Corpus Size (words) OOV Rate WER 

Training  1.5M 1.4% 24.3% 

Development 21.7K 3.0% 26.5% 

Test 4.6K 8.9% 41.9% 

 

3.2. Baseline Features 

We built a strong baseline ASR error detector using a 

variety of features commonly employed in existing literature 

[e.g., 2, 3-11], described below. These features were 

evaluated for every hypothesized candidate word. 

ASR confidence: Word posterior probabilities (WPP) 

computed from acoustic and language model scores using 

the forward-backward algorithm on a word lattice. Higher 

WPP implies greater “confidence” in the candidate word. 

LM perplexity: We used the negative LM log-likelihood of 

the candidate word given its n-gram context applied during 

ASR decoding. High perplexity implies mismatched 

linguistic context. 

Confusion network density: The number of competing 

words in the confusion network slot corresponding to the 

candidate word. Higher density suggests potential ASR 

error. 

Phonetic acoustic model score deviation: We measured the 

average, maximum, and minimum normalized deviation of 

phoneme acoustic scores across a hypothesized word with 

respect to true acoustic scores for those phonemes (z-

scores). To facilitate this, we pre-computed the mean and 

standard deviation of acoustic scores for each phoneme from 

force-aligned reference transcriptions in the training corpus. 

Word vs. graphone decoding disagreement: We computed 

the phonetic edit distance between hypotheses generated by 

word and sub-word ASR systems. We used graphones [13] 

as sub-word units due to their robustness (lower error rate) 

vis-à-vis phoneme decoding. Graphones were automatically 

learned and inferred from letter-to-phoneme alignment 

obtained using standard SMT phrase extraction techniques 

[14]. Maximum length of graphemes was set to three letters. 

Parts of speech: We automatically tagged the ASR 

hypotheses with their parts-of-speech using the Stanford 

tagger [15] and used these as categorical features. 

Homophone indicator: We employed a binary feature for 

each word indicating whether it is a homophone, i.e. shares 

lexicon pronunciation with other words (e.g. cell and sell). 

These acoustically confusable words tend to generate errors. 
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3.3. Modeling and Predicting Error Labels 

The baseline features in Section 3.2 were used in 

conjunction with a conditional random field (CRF) [16] 

using CRF++ [17] to model the relationship between the 

features and labels, as well as sequential dependencies 

between the labels. Because CRF++  is designed to work 

with categorical features, we discretized all real-valued 

features into 100 bins (this number was set empirically, 

which may need to be adjusted for a different task), each 

containing roughly the same number of instances. 

We tuned various model parameters, including the CRF 

order (first and second), context of neighboring words, and 

feature cutoff, on the held-out development set.  Best 

development set performance was achieved using a second 

order CRF to model dependency between successive labels, 

and a context of five words (i.e., features from the two prior, 

current, and two successive hypothesized words). 

We applied these settings to predict error labels for 

ASR hypotheses of the independent high-error test set. We 

obtained the receiver operating characteristic (ROC) curve 

for the system by sweeping the CRF marginal probabilities. 

Detailed results are presented in Section 6, but to 

summarize, the baseline system achieved an error detection 

rate of 66.3% at 10% false alarm rate. As a comparison, 

sweeping the ASR confidence score (WPP) gave an error 

detection rate of just 44.2% at the same false alarm rate. 

 

4. CSLT-BASED FEATURES  

 

We augmented the strong baseline error detector from 

Section 3 with novel features derived from the CSLT 

system. These include estimated SMT confidence projected 

to source words, and posteriors from the NED subsystem. 

 

4.1. SMT Confidence Estimates 

Our English-Iraqi CSLT system incorporates a phrase-based 

SMT confidence estimation framework that predicts the 

probability of error for each hypothesized target word in the 

SMT output. This was achieved using a set of SMT-derived 

features (e.g., forward translation probability, lexical 

smoothing score, target LM likelihood, etc.), as well as 

bilingual indicator features that capture word co-occurrences 

in the generating source phrase and candidate target word. A 

maximum-entropy (maxent) classifier predicted error 

probability of target words in conjunction with automatically 

derived reference labels from TER alignment. We projected 

target (Iraqi) error probabilities back on to source (English) 

words using the SMT decoding phrase derivations to obtain 

a measure of translation success over English words. Details 

of this system are available in our previous work [18]. 

Our rationale for incorporating projected translation 

success is that English ASR errors usually produce poor 

English-Iraqi translations, which are likely to be identified 

by the SMT confidence estimator. In other words, poor 

translation quality could be indicative of source ASR error.  

 

4.2. Named-Entity Detection (NED) Posteriors 

Our CSLT system frequently encounters named entities such 

as person and location names, a significant fraction of which 

tend to be OOV, causing ASR errors. Thus, knowing 

whether an ASR-hypothesized word might be a named entity 

could be useful in identifying a possible error.  Prior work 

(e.g., [19]) has used OOV detection features to help NED, 

but not the other way round. 

We built a maxent-based NED subsystem using 

contextual lexical and part-of-speech features trained on 

name-annotated corpora [18]. This classifier estimates the 

posterior probability of each ASR-hypothesized word being 

part of a named entity. We incorporated a discretized 

version of the NED posterior within the ASR error detector. 

 

5. WORD BOUNDARY FEATURES 

 

OOV words are often broken up by ASR into multiple in-

vocabulary words. As a result, word insertions are frequent, 

constituting around 33%, 32%, and 47% of word errors in 

our training, development, and test sets, respectively. The 

test set in particular exhibits a high insertion rate due to its 

high OOV word rate. The high insertion rate resulted in 

falsely-hypothesized word boundaries in speech. For 

instance, the ASR hypothesis “WHILE BEING” in Figure 1 

suggests a word boundary right in the middle of the OOV 

word “WELDING”. Thus, automatic speech-based word 

boundary detection can be used to verify ASR-hypothesized 

boundaries, with false boundaries indicative of ASR error.  

 

 

 

Acoustic-prosodic features have been shown to be 

useful for word boundary detection. Rao and Srichand [20] 

report that pitch variations between and within words are 

indicative of word boundaries. Chi [21] suggests that   

consonants at word boundaries have longer durations than 

word-medial consonants. Based on these findings, we used 

fundamental frequency (F0), voicing probability, loudness, 

and phoneme duration features for word boundary detection. 

 For each hypothesized word boundary time point, we 

calculated the  absolute difference of the maximum, 

minimum, and average values of F0, voicing probability, and 

loudness between hypothesized words immediately 

preceding and following the boundary. We computed 

duration z-scores for the phonemes immediately preceding 

and following the hypothesized boundary point. To facilitate 

this, mean and standard deviation of phoneme durations 

Figure 1. OOV word in development set split in three by ASR 
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were pre-computed from force-aligned reference 

transcriptions of the training set. Finally, we included the left 

and right phoneme identities for a total of 13 features for 

word boundary detection.  

Reference labels for word boundary detection were 

obtained automatically using the jack-knife partitions of 

Section 3.1 by comparing the boundaries hypothesized by 

the ASR to true boundaries obtained by force-aligning 

reference transcriptions. A hypothesized word boundary is 

“correct” only when it aligns exactly with a true word 

boundary, otherwise it is “incorrect”.  

We used the LogitBoost binary classifier in Weka [22] 

for word boundary detection. LogitBoost incrementally 

boosts the weight of training instances that are mis-

classified, combining a set of weak classifiers (decision 

stumps). The top ranked features are the right and left 

phoneme identities, as well as duration features. The overall 

accuracy of the word boundary classifier on the test set was 

76.3% vs. 75.8% for the majority classifier, which always 

predicts “boundary”. The area under the ROC curve (AUC) 

was 0.61 vs. random classification AUC of 0.5. 

Our objective is not to maximize word boundary 

detection accuracy, but to exploit it for ASR error detection. 

To this end, we incorporated discretized word boundary 

posteriors within our ASR error detection feature set. For 

each hypothesized word, we included word boundary 

posteriors corresponding to its start- and end-points.  

 

6. EVALUATION RESULTS 

 

 

Figure 2. ROC curves for baseline and proposed detector with 

inset view focusing on 5%-15% false alarm rate. 

 

We augmented the strong baseline system of Section 3 with 

CLST-based features from Section 4 and word boundary 

features described in Section 5. Figure 2 shows the ROC 

curves for the baseline system and the improved detector 

with the proposed features. We particularly focus on the 

region of the ROC curve at 5%-15% false alarm rate, where 

we typically operate the ASR error detector. Figure 3 shows 

the improvement in detection rate at 10% false alarm rate 

when adding these features incrementally to the baseline 

system. The baseline system has a detection rate of 66.3%. 

The proposed features increase detection rate to 69.1%, an 

absolute improvement of 2.8% (4.2% relative). 

 

 

Figure 3. Detection rates at 10% false alarm for incremental 

addition of proposed features to the baseline system. 

 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

 

Automated ASR error detection is crucial for CSLT systems 

because it can help prevent downstream propagation of 

errors, and give  interactive systems the chance to engage the 

user and resolve detected errors. A CSLT system provides 

additional information streams for detecting ASR errors, 

above and beyond traditional features employed in 

ASR/OOV error detection. We proposed novel features 

derived from CSLT system components, including projected 

SMT confidence estimates and NED posteriors. At 10% 

false alarm rate, SMT confidence provided the single biggest 

gain in error detection rate (1.7% absolute) over the 

baseline. 

We additionally incorporated word boundary detection 

to verify ASR-hypothesized word boundaries and used the 

estimated boundary posteriors as additional features for ASR 

error detection. At 10% false alarm rate, this provided a gain 

of 0.8% detection rate over the combination of all baseline 

and CSLT-based features, bringing the total absolute error 

detection rate improvement to 2.8% (4.2% relative) over a 

strong baseline system.  

We are concurrently exploring the utility of ASR error 

detection in improving SMT performance. Initial results 

have shown that high ASR error detection accuracy can help 

improve translation scores in an error-robust SMT decoding 

framework [23]. Future work includes exploring other 

features to improve detection rate, as well as evaluating the 

overall impact on the usability and effectiveness of 

interactive CSLT systems. 
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