
NOISE ADAPTIVE FRONT-END NORMALIZATION BASED ON VECTOR TAYLOR SERIES
FOR DEEP NEURAL NETWORKS IN ROBUST SPEECH RECOGNITION

Bo, Li and Khe Chai, Sim

National University of Singapore, School of Computing
Computing 1, Singapore 117417

ABSTRACT

Deep Neural Networks (DNNs) have been successfully ap-
plied to various speech tasks during recent years. In this
paper, we investigate the use of DNNs for noise-robust
speech recognition and demonstrate their superior capabil-
ities of modeling acoustic variations over the conventional
Gaussian Mixture Models (GMMs). We then propose to
compensate the normalization front-end of the DNNs using
the GMM-based Vector Taylor Series (VTS) model com-
pensation technique, which has been successfully applied in
the GMM-based ASR systems to handle noisy speech. To
fully benefit from both the powerful modeling capability of
the DNN and the effective noise compensation of the VTS,
an adaptive training algorithm is further developed. The
preliminary experimental results on the AURORA 2 task
have demonstrated the effectiveness of our approach. The
adaptively trained system has been shown to outperform the
GMM-based VTS adaptive training by relatively 18.8% using
the MFCC features and 21.9% using the FBank features.

Index Terms— Noise Robustness, Vector Taylor Series,
Deep Neural Networks

1. INTRODUCTION

Creating and developing systems that would be much more
robust against variability and shifts in acoustic environments,
reverberations, external noise sources, communication chan-
nels, speaker characteristics and language characteristics has
always been the goal of speech recognition researchers. In
recent years, Deep Neural Networks (DNNs), which are ef-
fectively multilayer perceptrons (MLPs) with many hidden
layers, have been successfully applied to various speech tasks.
The context-independent DNN-HMM hybrid systems [1, 2]
have been initially proposed for the phoneme recognition.
Later, a novel context-dependent (CD)-DNN-HMM system
[3] has been successfully applied to large vocabulary speech
recognition systems. The DNN system has been shown to
reduce the word error rate by up to one third on the chal-
lenging conversational speech transcription tasks compared
to the discriminatively trained conventional CD-GMM-HMM
systems in [4]. It then intrigues much interest in adopting the

DNNs for the noise-robust speech recognition. In [5], the
Recurrent Neural Network (RNN) and the DNN have been
shown to generalize much better than GMMs and MLPs on
the AURORA 2 task [6]. In [7], a deep recurrent denoising
autoencoder (DRADE) is trained on the stereo data to recon-
struct the clean utterances from the noisy input features. It
has been shown to outperform the SPLICE denoising algo-
rithm [8] and the hand-engineered ETSI2 advanced front end
(AFE) denoising system [9]. The DRADE makes no assump-
tion on how the noise affects the signal, nor the existence of
distinct noise environments. It is thus more dependent upon
the training data to provide a reasonable sample of noise
environments that could be possibly encountered at test time.

Model-based approaches that utilize explicit models of
noise, channel distortion, and their interaction with speech
are a well-established and continually-evolving research
paradigm in noise-robust speech recognition. The Vector
Taylor Series (VTS) compensation method [10] and the cor-
responding noise adaptive training (NAT) [11] have been
widely adopted in GMM-HMM systems. Due to the many
layers of non-linearities, the model-based compensation for
the DNN is much harder than for the GMM. In [12], a Fac-
torial Hidden Restricted Boltzmann Machine (FHRBM) is
proposed to explicitly model the noise distribution and how
the noise affects the speech. However, due to the un-observed
noise parameters in the input layer of FHRBM, the inference
is intractable and scaling exponentially with the number of
hidden units. Variational approximations have to be used. In
this paper, we propose to compensate only the normalization
front-end of the DNN using the VTS.

2. METHODS

The effect of the acoustic noise on the feature vectors is usu-
ally modeled by the following mismatch function [13]

ys = xs + hs +C log(1 + exp(C†(ns − xs − hs)))
= xs + hs + g(xs,ns,hs) (1)

where the superscript s indicating the static part of each vari-
able. The y,x,h,n are the cepstrum vectors corresponding
to the distorted speech, clean speech, channel and additive
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noise, respectively. C and C† are the discrete cosine trans-
form and its pseudo-inverse.

The model compensation scheme combines the clean
trained model and noise distributions with the mismatch
function to find the parameters for the noise-corrupted speech
model. Due to the nonlinearity of the mismatch function,
it is hard to directly incorporate Equ. (1) to ASR systems.
A first-order VTS approximation [10] of Equ. (1) is pro-
posed to estimate the corrupted static mean and covariance.
To compensate the delta parameters, the continuous time
approximation [14] is commonly used. The environment
distortion (noise and channel) parameters are usually esti-
mated per test utterance using an iterative EM algorithm. The
standard VTS compensation assumes a clean speech model.
To utilize the multi-condition data, a noise adaptive training
(NAT) has been proposed [11].

2.1. VTS Compensation for DNN Front-end

A DNN is a multi-layer perceptron with many hidden layers.
The main challenge in learning DNNs is to devise efficient
strategies in order to escape poor local optimum of the com-
plicated nonlinear error surface introduced by the large num-
ber of hidden layers. A common practice is to initialize the
DNN weights layer by layer using generatively trained Re-
stricted Boltzmann Machines (RBMs) before the discrimina-
tive joint fine-tuning of all the layers [1].

Directly applying the mismatch function Equ. (1) to com-
pensate the DNN is similar to augment the DNN with one ex-
tra nonlinear input layer, which models the inverse of the mis-
match function. Following the VTS convention, the weights
of this layer should be estimated per test utterance in an unsu-
pervised way, which is challenging for discriminative models
especially when the mismatch is large. Instead, we propose
to compensate the generative normalization front-end of the
DNN per test utterance.

A common practice for neural network training is to first
normalize the input features to have zero mean and unit vari-
ance in each dimension. Suppose y is a D-dimensional noisy
input feature vector and the normalization parameters esti-
mated from training data are

µm =
[
µm,1 µm,2 · · · µm,D

]>
(2)

Σm = diag
( [
σ2
m,1 σ2

m,2 · · · σ2
m,D

]> )
(3)

The normalization process could be represented as a linear
input layer in front of the DNN with the bias b and the weight
matrixW as

b =
[
−µm,1

σm,1
−µm,2

σm,2
· · · −µm,D

σm,D

]>
(4)

W = diag
( [ 1

σm,1

1
σm,2

· · · 1
σm,D

]> )
(5)

From the model perspective, this DNN normalization front-
end captures the overall training data distribution and is gen-
eratively estimated. When applying the DNN model to the

mismatched test data, we can do a global compensation to the
overall data distribution by compensating this front-end. As
it is effectively a single diagonal Gaussian, the GMM-based
VTS compensation could be directly applied to µm and Σm

yielding the corrupted front-end parameters, µ̂m and Σ̂m:

µ̂sm = µsm + µsh + g(µsm,µ
s
n,µ

s
h) (6)

Σ̂
s

m = JΣs
mJ
> + (I − J)Σs

n(I − J)> (7)

where the µn, µh and Σn are the environment distortion pa-
rameters. The I is an identity matrix and the J is the Jaco-
bian of the mismatch function with respect to the clean speech
parameter. Dynamic parameters are commonly derived from
the compensated static parameters using a continuous time
approximation [14].

With µ̂m and Σ̂m, the VTS compensated DNN front-end,
b̂ and Ŵ , can be computed from the Equ. (4) and Equ. (5)
by replacing each variable with its compensated version. The
VTS-compensated normalized feature vector x̂NORM, which
is believed to match better to the training data, can then be
computed by

x̂NORM = Ŵy + b̂ (8)

To estimate the unknown environment distortion parame-
ters, we could formulate them into the DNN’s discriminative
training framework. However, it may not work well with lim-
ited unsupervised data, i.e. the specific test utterance. In this
work, we simply borrow the noise estimations from the VTS
compensation of a conventional GMM-HMM system.

2.2. Feature-based VTS

Although our approach is formulated as a model based com-
pensation, if we take the normalization front-end of the DNN
as a feature processing step, it may look like a feature-based
VTS. However, they are quite different. From [10], a GMM
that represents the clean speech feature distribution has to be
estimated additionally. The pseudo-clean features are esti-
mated using the minimum mean square estimation (MMSE)
from the noisy observations. With the first-order VTS approx-
imation, they are computed as

x̂sMMSE = E(xs|y) =
∫
xs p(xs|y)dxs

= y −
K−1∑
k=0

p(k|y)(µsh + g(µsx,k,µ
s
n,µ

s
h)) (9)

where p(k|y) is the posterior probability for the kth Gaussian
in the noise-compensated GMM given the noisy feature y.
The µx,k is the mean of the kth Gaussian in the clean GMM.
Comparing to this feature-based VTS, our approach (cf. Equ.
(8)) not only shifts but also scales the noisy speech,. The addi-
tional scaling step actually captures the variance changes be-
tween the clean and noisy speech. Moreover, multiple Gaus-
sians usually have to be estimated for the feature-based VTS,
while only a single Gaussian is involved in our approach.
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2.3. Adaptive Training

Similar to the GMM-HMM, the VTS compensation has the
clean speech model assumption. When dealing with multi-
condition data, the noise adaptive training (NAT) is com-
monly adopted. We also hope to take advantage of DNNs’
powerful modeling capability to relieve the limitation of
the single Gaussian based global compensation through the
adaptive training. A NAT based on our front-end VTS com-
pensation is thus developed. It is done as follows: 1) Train a
DNN model from the multi-condition data and estimate the
initial environment distortion parameters from the beginning
and ending frames for each utterance (20 frames in our ex-
periments); 2) Compensate the current DNN front-end and
estimate a new set of distortion parameters with the current
DNN hypotheses; 3) Re-train the DNN with the new noise
compensated front-end; 4) Go back to step 2 until the recog-
nition accuracy converges on the cross validation set. After
the adaptive training, the distortion parameters are discarded
and only the pseudo-clean DNN is kept for testing.

3. EXPERIMENTS

To justify the effectiveness of our proposed VTS compensa-
tion for the DNN, we conduct a series of experiments on the
AURORA 2 task. It contains 8,440 sentences of clean training
data and 8,440 sentences of multi-condition training data. The
test sets comprise 8 different noises at 7 different noise levels,
totally 56 different test scenarios. They are further grouped
into three broad test sets, namely Set A with noise types seen
in the training data, Set B with noise types unseen and Set C
with both additive noise and channel distortion. The HMM
baseline system has 16 states per digit and 20 Gaussian per
state following the standard “complex back-end” AURORA
2 recipe [15]. A simple equal-probability digit loop language
model is used for decoding. For all the VST compensations
in this study, only the first-order approximation is used. Word
Error Rates (WERs) averaged over SNR values of 0-20dB for
each test set are reported.

3.1. Clean Training

In this experiment, we first test our proposed approach on
the clean trained models. The 39D MFCC features consist-
ing of 13 cepstral features projected from 26 log filter-banks
(FBanks) with delta and accelerator features are used. The
cepstral coefficient of order zero (C0) is used instead of the
log energy. Besides the GMM-HMM model, an 8-hidden-
layer DNN-HMM model is also trained on the clean training
data. A context window of totally nine frames and 512 units
per hidden layer are adopted. The front-end normalization pa-
rameters are estimated from the clean training data only once.
The WERs for each test set of these two systems are tabulated
in the row “-” (i.e. without any compensation) in Table 1. The
performance for the clean test data is also presented. From
the results we can see that both the clean GMM and DNN

Table 1. Average WER (%) of AURORA 2 recognition re-
sults based on clean trained models using MFCCs.

System Clean Test Set
A B C Avg

GMM
- 0.4 39.1 40.0 39.1 39.5

VTS F 0.4 14.1 13.2 14.8 13.9
VTS M 0.4 8.9 8.4 9.7 8.8

DNN

- 0.3 39.3 40.2 37.3 39.2
UTT 0.2 15.2 12.6 14.5 14.0

VTS F 0.2 10.4 9.4 10.6 10.0
VTS M 0.2 15.7 13.6 15.8 14.9

dramatically degrade in the noisy environment.
A 2048-component GMM is estimated for the feature-

based VTS compensation (“VTS F” in Table 1) and 4 itera-
tions of noise estimations are done for the model-based VTS
compensation (“VTS M” in Table 1) of the GMM-HMM
system. The WERs on all the three test sets are greatly re-
duced especially using model-based VTS, from 39.5% to
8.8%. As feature-based VTS has no assumption of the recog-
nition systems, we could directly apply it to the DNN, which
yields an average WER of 10.0%. Compensating the DNN
front-end with the distortion parameters borrowed from the
GMM-HMM system reduces the baseline WER from 39.2%
to 14.9%. Although it is not as effective as VTS on GMMs,
the simple DNN front-end VTS compensation still reduces
the DNN baseline WER by more than a half. One probable
explanation would be that with thousands of Gaussians in
the GMM systems the VTS compensation is more effective.
As “VTS M” is effectively estimating the testing normaliza-
tion parameters from the training ones using VTS, we also
train a DNN using per-utterance normalization and the results
are listed under the column “UTT”. It is slightly better than
“VTS M” due to the true normalization parameters per test
utterance.
3.2. Multi-condition Training

Similarly, the 39D MFCC features of the multi-condition data
are used to train the GMM-HMM and the DNN-HMM with
the same model structures as before. The recognition perfor-
mance is listed in the Table 2 with the same naming conven-
tion. The baseline DNN system has a relative 31.5% error
reduction over the GMM baseline system, clearly indicating
its superior acoustic modeling capability. However, compar-
ing the three test sets, the DNN performs much better on the
test set with seen noises (the Set A) and degrades on the Set B
with different noises, especially on the Set C with additional
channel distortions.

Both the feature-based VTS, “VTS F”, and the model-
based VTS, “VTS M”, are applied. All the distortion pa-
rameters used for the DNN compensation are borrowed from
the corresponding GMM-HMM systems. Although the VTS
compensation has the clean speech model assumption, it still
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works well for the multi-condition models. This may imply
that the VST is not restricted to the additive noise and channel
distortions but the more general data mismatch between the
training and the testing. “VTS M” consistently outperforms
“VTS F” on the GMM-HMM system; however for the DNN,
our simple front-end based model compensation is slightly
worse than the “VTS F”, 7.0% vs. 6.7%.

After the VTS compensation, the GMM has similar per-
formance among the three test sets, while the WERs of our
approach, i.e. the DNN “VTS M”, increase with the difficulty
levels of the test sets. This may attribute to the fact that the
distortion parameters are not directly optimized for the DNN
and the global compensation may not be capable to capture
all the variations. We then further investigate the noise adap-
tive training for both the two systems. For the feature-based
NAT, “NAT F”, the canonical models are re-estimated on the
pseudo-clean features after the distortion parameter estima-
tion. From our experiments, one full iteration of re-training
gives the best recognition performance for both the “NAT F”
and the model-based NAT, “NAT M”, which is listed in Ta-
ble 2. After re-training the DNN with the VTS compensated
normalization front-end we could achieve an average WER of
5.2%, which is relatively 18.8% lower than the GMM NAT’s
6.4% and 8.8% than the DNN UTT’s 5.7%. This could be at-
tributed to the superior modeling capability of the DNN which
relieves the limitation of the single Gaussian based front-end
compensation. While for the feature-based NAT, a slightly
degradation over the “VTS F” only has been observed, 6.9%
vs. 6.7%. However the DNN frame accuracy on the training
data improves a lot. It may be explained by the fact that the
imperfect pseudo-clean feature estimated by the feature-based
VTS does not maintain all the necessary variations causing
the over-fitting of the DNN on the training data.

All the current experiments are based on the MFCC fea-
tures. MFCCs attempt to reduce the dimensionality of the
input and decorrelate the feature dimensions such that diag-
onal Gaussians are sufficient for ASR systems. With a pow-
erful model, less pre-processed input representations, such as
FBank features [1] and waveforms [16], could yield better
recognition performance. We then use the 40-dimensional
log FBank features and the log energy with the delta and
the accelerate features. Similarly, nine contextual frames are
employed and totally 8 hidden layers are trained. Due to
the much higher input feature dimension, 123 vs. 39, the
size of each hidden layer is set to 1024 instead of the 512
used for MFCC features. The recognition performance for
FBank features (Table 2) is the lowest for both the uncompen-
sated model and our proposed simple model-based compen-
sation. Due to the correlations among each FBank feature di-
mension, which are not well modeled by the diagonal GMM,
the feature-based VTS compensation performs worse and de-
grades greatly in the “NAT F” due to over-fitting. With the
proposed model-based adaptive training, our method achieves
a WER of 5.0%, which is a relatively 21.9% error reduction

Table 2. Average WER (%) of AURORA 2 recognition re-
sults based on multi-condition trained models.

System Clean Test Set
A B C Avg

- 0.6 12.3 10.4 17.9 12.7

GMM VTS F 0.5 8.0 7.7 8.0 7.9

MFCC VTS M 0.5 7.0 6.9 7.2 7.0
NAT F 0.5 6.7 6.4 7.0 6.6
NAT M 0.5 6.5 6.1 6.8 6.4

- 0.4 6.4 8.5 13.7 8.7
UTT 0.5 5.1 6.3 5.8 5.7

DNN VTS F 0.6 6.6 6.9 6.5 6.7
MFCC VTS M 0.3 6.7 6.8 8.3 7.0

NAT F 0.7 6.5 7.5 6.8 6.9
NAT M 0.2 4.7 5.7 5.3 5.2

- 0.3 5.7 7.8 12.1 7.8
UTT 0.3 4.6 5.7 5.6 5.2

DNN VTS F 0.7 7.3 7.8 7.9 7.6
FBank VTS M 0.2 5.9 7.4 6.7 6.6

NAT F 0.9 9.9 11.6 11.0 10.8
NAT M 0.2 4.2 5.7 5.3 5.0

than the GMM-based NAT model.

4. CONCLUSIONS

In this paper, we propose a simple but effective model-based
adaptive compensation approach for the DNN-based noise-
robust speech recognition, which first compensates the nor-
malization front-end of the DNN and then re-update all its
back-end layers. We have demonstrated the effectiveness of
our approach on the AURORA 2 task. It is more efficient than
GMM-based VTS as only one Gaussian needs to be compen-
sated per test utterance. With the adaptive training, the simple
VTS-based DNN front-end compensation could yield a rela-
tively 18.8% WER reduction over the GMM-based NAT sys-
tem. Moreover, with log FBank features, we could achieve
a relatively 21.9% improvement against the GMM NAT sys-
tem. However, this approach is not as effective as VTS on
clean trained speech models. One possible direction would
be to estimate the environment distortion parameters directly
from the DNN instead of borrowing from the GMM. Further-
more, instead of a global compensation of the single Gaussian
based DNN normalization front-end, a GMM-based front-end
may yield improved performance.
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