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ABSTRACT

In this paper, we propose a novel acoustic modeling framework,
synchronous HMM, which takes full advantage of the capacity of
the heterogeneous data sources and achieves an optimal balance be-
tween modeling accuracy and robustness. The synchronous HMM
introduces an additional layer of substates between the HMM states
and the Gaussian component variables. The substates have the capa-
bility to register long-span non-phonetic attributes, which are inte-
grally called speech scenes in this study. The hierarchical modeling
scheme allows an accurate description of probability distribution of
speech units in different speech scenes. To address the data spar-
sity problem, a decision-based clustering algorithm is presented to
determine the set of speech scenes and to tie the substate parame-
ters. Moreover, we propose the multiplex Viterbi algorithm to effi-
ciently decode the synchronous HMMs within a search space of the
same size as for the standard HMMs. The experiments on the Au-
rora 2 task show that the synchronous HMMs produce a significant
improvement in recognition performance over the HMM baseline at
the expense of a moderate increase in the memory requirement and
computational complexity.
Index Terms: Speech recognition, hidden Markov model, system
combination, Viterbi algorithm

1. INTRODUCTION
It is widely known that the performance of the speech recognition
systems often degrades dramatically if they are operated under mis-
matched operating conditions. A common practice to ameliorate this
mismatch problem, known as multistyle training, is to collect large
amounts of speech data from a variety of acoustic conditions for
training the acoustic models. However, the multistyle training may
not fully realize its performance potential as the HMM-based acous-
tic models are excessively diffused to accommodate the extraneous
variabilities introduced by the tremendous amounts of speech data.

One broad class of approaches that address the modeling of het-
erogeneous data sources is to use an ensemble of models, each fo-
cusing on a particular acoustic condition. The simplistic way to gen-
erate multiple models is to divide the training corpus into a number
of homogeneous blocks, and then train an HMM set for each block.
Recognition can be performed by running multiple recognizers of
these models in parallel. The recognition hypothesis is obtained by
either combining the decoding outputs of the multiple recognizers
in a ROVER-like paradigm [1] or choosing the one with the highest
likelihood. An alternative way of combining multiple models is to
preselect one model set that best matches the operating condition for
recognition.

Moreover, multiple models can be combined at the frame level
to achieve a more granular form of combination. The most com-
mon forms are cluster adaptive training (CAT) [2] and eigenvoice
[3], where the target model is obtained as a linear interpolation of
multiple speaker/cluster-dependent models. Typically, the interpo-
lation weights are estimated from the adaptation data using the ML
criterion.

The multi-model approach is an attractive scheme to address het-
erogeneous data sources for speech recognition. However, a number

of problems may limit their usefulness. The first problem is the data
sparsity in estimating parameters of multiple models. As the num-
ber of the models increases, there will be fewer data available for
providing reliable estimation for each individual model. The sec-
ond problem is the heavy computational load in combining multiple
models. Following the classical ensemble learning theory, it is ex-
pected that the best performance should be obtained by applying the
constituent models in parallel to produce a plurality of candidate hy-
potheses for the majority voting. Unfortunately, this introduces mul-
tiple decoding with dramatically increased computational complex-
ity and memory requirements. The similar situation applies to CAT,
which usually requires two decoding passes to accomplish. Though
alternative methods such as model pre-selection can alleviate this
drawback, they are at the expense of compromising the recognition
accuracy.

In this paper, we consider a novel acoustic modeling framework,
synchronous HMM, which takes full advantage of the capacity of
the diversified speech data and achieves an optimal balance between
modeling accuracy and robustness. In contrast to the conventional
HMMs, the synchronous HMM introduces an additional layer of la-
tent variables, referred to as substates, between the HMM state and
the Gaussian component variables. The substates have the capability
to register long-span non-phonetic attributes, such as gender, speaker
identity, and environmental condition, which are integrally called
speech scenes in this study.

The acoustic models built upon the synchronous HMMs can be
thought of as a collection of multiple acoustic models, each corre-
sponding to a specific speech scene. In this regard, it is related to
the multi-model approaches [4], [5], [6]. However, the synchronous
HMM offers a number of advantages over the conventional multi-
model approaches. First, the hierarchical modeling scheme allows
an accurate description of probability distribution of speech units in
different speech scenes. Second, by closely incorporating the mod-
els of speech scenes as sub-models of the synchronous HMM, we
can determine the model structure and estimate the model parame-
ters in an integral and consistent manner. Furthermore, by exploiting
the synchronous relationship among the speech scene sub-models,
we propose the multiplex Viterbi algorithm to efficiently decode the
synchronous HMM within a search space of the same size as for the
standard HMM. The multiplex Viterbi can also be generalized to de-
code an ensemble of isomorphic HMM sets, a problem often arising
in the multi-model systems.

2. SYNCHRONOUS HMMS

In contrast to the conventional Gaussian mixture HMM, the syn-
chronous HMM introduces an additional layer of latent variables,
referred to as substates, between the HMM state and the Gaussian
component variables. The substates depend on the previous substate
in addition to the state that generates it. Accordingly, the model
consists of a quadruple of stochastic processes (xT

1 , s
T
1 , z

T
1 ,m

T
1 ),

where xT
1 = x1, ...,xT is a sequence of observations of length T ,

and sT1 = s1, ..., sT , zT1 = z1, ..., zT , and mT
1 = m1, ...,mT are

sequences of latent variables of HMM states, substates, and mixture
indexes, respectively. The statistical dependencies between these
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Fig. 1. Dynamic Bayesian network representation of the syn-
chronous HMM.

variables can be represented by a DBN [7] as shown in Fig. 1.
The synchronous HMM is motivated by aiming at accurately

characterizing the highly heterogeneous data sources. For speech
recognition, the state layer represents the process of the canonical
speech, and the substate layer represents the process of a variety
of real-world speech due to speaker and environmental variations,
which are referred to as speech scenes in this study.

One key property of the synchronous HMMs is that the evolu-
tion of the substate layer is synchronous with the evolution of the
state layer. This effectively eliminates the possible explosion of the
state space caused by introducing multiple Markov chains, as for the
case of the factorial HMM [8]. Suppose that the model consists of
N states and each state corresponds to K substates, which leads to
NK substates in the substate layer. Naively, the state space com-
posed of the direct product of states and substates would be of size
N2K. However, by imposing the synchronous constraint on the two
Markov chains, the state space retains a size of NK. Moreover, the
synchronous HMM can be interpreted as the synchronization among
substates of different speech scenes. This will lead to substantial
computational savings in learning and decoding the model as will be
discussed later.

From the DBN in Fig. 1, the joint probability of these sequences
in the synchronous model can be factored as

p(xT
1 , s

T
1 , z

T
1 ,m

T
1 ) =

T∏
t=1

p(st|st−1)p(zt|zt−1, st)

× p(mt|st, zt)p(xt|st, zt,mt) (1)

The synchronous HMM consists of the following elements: state
transition probability p(st = j|st−1 = j′) = aj′j , substate tran-
sition probability p(zt|zt−1, st) (to be discussed shortly), prior of
Gaussian component l from state st = j and substate zt = k

p(mt = l|st = j, zt = k) = wjkl

and likelihood of Gaussian component l from state st = j

p(xt|st = j,mt = l) = N (xt;µjl,Σjl)

Note that, to make effective use of data, the Gaussian components
for each state are shared among all substates of that state. Thus
the substates from the same state differ only in the mixture weights,
analogous to the method used in the semi-continuous HMMs [9].

Depending on the form of the substate transition probabilities
p(zt|zt−1, st), there are several variants of the synchronous HMM.
When the observation distribution of the substates degenerates to a
single Gaussian, the synchronous HMM is equivalent to the stranded
HMM as described in [10]. One limitation of the stranded HMM is
that the transitions between the substates (i.e., mixture components
in the stranded HMM) are bounded inside an HMM, preventing it

from capturing the long-span temporal dependency of speech.
An alternative of the synchronous HMM, which aims to take into

account the long-span temporal dependency, is to deterministically
specify the dependency between substates. Consider that the kth
substates of all the states represent speech from a particular speech
scene, and the speech scene keeps unchanged during an utterance.
The substate transition probability can be written as

p(zt = k|zt−1 = k′, st = j) = δ(k′, k) (2)

where δ(·, ·) denotes the Kronecker delta function. In addition, we
can maintain the speech scene dependency across the models by cre-
ating multiple dummy substates for each dummy state and drawing
links between the corresponding ones. Thus, the kth substates of
all the states form a separate sub-model representing the kth speech
scene. The substate transition diagram of the synchronous HMM
with separate speech scenes is illustrated in Fig. 2.

Fig. 2. Illustration of substate transitions and observation distri-
butions for the synchronous HMM. The substates of three speech
scenes are connected separately within and across the models. The
processes of different speech scenes are synchronous with each
other. The substates from the same state share the pool of Gaussian
components and differ in the mixture weights.

Moreover, the speech scenes can be allowed to switch at bound-
aries of HMMs or words. The synchronous HMM with switching
speech scenes can capture the speech under the influence of slowly
varying factors, such as non-stationary environmental noise. How-
ever, this paper will be focused on investigating the synchronous
HMM with separate speech scenes.

The synchronous HMM can be learned using an EM algorithm
similar to the regular HMM, but the estimation of the scene-specific
model parameters (i.e., mixture weights) needs to be addressed with
care. Basically, we start with a set of well-trained Gaussian mix-
ture HMMs. We then divide the training corpus into a number of
homogeneous subsets based on some criterion, and generate multi-
ple speech scene sub-models by updating the mixture weights of a
sub-model based on each subset. Finally, several runs of full-scale
re-estimation are carried out without explicitly associating the sub-
sets to the speech scene sub-models.

3. SPEECH SCENE DECISION TREE

One issue in employing the synchronous HMM for speech recog-
nition is the data sparsity. When the number of the speech scenes
increases, there will be fewer data available for providing reliable
estimation of the scene-specific model parameters. We present a de-
cision tree-based algorithm to address this problem, analogous to the
phonetic decision tree used for clustering context-dependent phone
models [11]. Suppose that the utterances are tagged with the acous-
tic conditions, such as gender, speaker identity, and environmental
condition. We first produce the synchronous HMMs with as many
sub-models as the distinct acoustic conditions in the training corpus.
Then the decision tree-based clustering is applied globally or at the
substates of individual states.
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The global decision tree is aimed to cluster the speech scene
sub-models, and thus to determine the set of sub-models in the fi-
nal synchronous HMMs. The tree is built in a top-down fashion
with the questions relating to the acoustic condition tags. Nodes are
iteratively split at each iteration by finding a node and an associ-
ated question that jointly produce the maximum increase in the log-
likelihood on the training data. If we assume that during clustering,
the Gaussian components remain unchanged, then only the mixture
weights of the clustered sub-models need to be calculated. It turns
out that the criterion of maximum increase in the log-likelihood is
equivalent to the maximum reduction of the weighted entropy of the
mixture weights. On completion of the clustering, the speech scene
sub-models in the same cluster can be merged. This leads to a com-
pact set of speech scenes in the synchronous HMM.

Alternatively, we can cluster and tie the substates of individual
states for improved efficiency. We may apply the decision tree for
each state following the same top-down clustering procedure. How-
ever, building separate trees for different states hinders the possible
merging of the speech scene sub-models, because the sub-models
can be merged only if they share common clusters for all their sub-
states. To address this problem, we cluster the substates of individ-
ual states by trimming the global decision tree in a bottom-up fash-
ion. We initialize a decision tree of the substates for each state by
cloning the topology of the global decision tree. The trimming pro-
cess starts with pairs of sibling leaf nodes, which are merged if the
log-likelihood reduction is less than some threshold, or some leaf
nodes lack sufficient data to support themselves. After iteratively
merging all of such sibling pairs, we note that some rarely seen leaf
nodes have not yet been trimmed, because their siblings are non-
leaf nodes. We then merge these dangling leaf nodes with other leaf
nodes that result in the minimum reduction in the log-likelihood.

4. MULTIPLEX VITERBI DECODING

The decoding process using the synchronous HMM is to find the best
path that matches the given observation sequence, through the search
space spanned by states and substates. A straightforward decoding
method is to perform the Viterbi algorithm through the search space
comprising the substates of the model. However, this method leads
to a dramatic increase in memory requirements and computational
complexity, which roughly correspond to K times of decoding the
standard HMM.

We propose a novel multiplex Viterbi algorithm that performs an
effective decoding on the synchronous HMM by keeping the search
space of the same size as for the standard HMM. The search space is
constructed based on the model states, except that each state node is
compounded by all the substates of that state. At each time step, the
substates of a state share the same path, but keep individual records
of the sub-path scores, which are cumulated over the substate se-
quence following the shared path. The path score of the state takes
the highest sub-path score from the constituent substates, and is used
to represent the fitness of that state in the Viterbi decoding. Fig. 3
shows the trellis diagram for the multiplex Viterbi algorithm.

More formally, let δ̃t(j, k) be the sub-path likelihood for sub-
state k following the best partial path ending in state j at time t. By
induction, we have the recursion formula

δ̃t(j, k) = δ̃t−1(i
∗, k)ai∗jbjk(xt) (3)

i∗ = argmax
i

{
max

k
δ̃t−1(i, k)aijbjk(xt)

}
(4)

where i∗ is the preceding state that leads to the best path ending in
state j at time t. Note that in a strict sense, i∗ should be written as

Fig. 3. Illustration of the multiplex Viterbi algorithm. The substates
of a state share the same path, but keep individual sub-path scores.

i∗t (j) to indicate their dependence on time t and state j. Neverthe-
less, we apply the shorter notation for ease of understanding (3).

It should be noted that the multiplex Viterbi finds an approxi-
mate solution to the best state sequence, because the state path is
jointly determined by the constituent sub-paths. We here assume
that if a substate sequence can successfully match the observation se-
quence, the resulting state/observation alignment should also be ap-
propriate for aligning the observations with other substate sequences
following the same state sequence.

Remarkably, the multiplex Viterbi can be generalized to decode
an ensemble of isomorphic standard HMM sets, a problem often
arising in the multi-model systems. These HMM sets share the same
search space, and equal in the state transition probabilities, but differ
in the observation probability distributions. Typically, we are inter-
ested in the best HMM set and the best state sequence that jointly
achieve the highest likelihood given the observation sequence. The
multiplex Viterbi can efficiently address this decoding problem.

Moreover, we can apply the beam search strategy [12] to prune
less likely speech scenes during the multiplex Viterbi to accelerate
the decoding speed. We first determine, at each time step, the highest
sub-path score for each speech scene. Then the speech scenes whose
highest scores fall short of the score of the best speech scene by more
than a fixed factor are pruned from further consideration.

The major advantage of the multiplex Viterbi is that it signif-
icantly reduces the memory requirements and computational com-
plexities in comparison with the standard Viterbi algorithm for de-
coding K HMM sets. First, by constructing a search space of the
same size as for the standard HMM, the multiplex Viterbi eliminates
the memory and computational overhead in constructing and main-
taining a K-times increased search space. Moreover, the use of the
speech scene pruning strategy further saves a considerable computa-
tional load.

5. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated on the Aurora 2 database [13]
of connected digits. The multistyle training set is used to train the
acoustic models. It consists of noisy data involving four types of
noise (subway, babble, car, and exhibition hall) at four SNRs (20,
15, 10, and 5 dB), along with clean data, totaling 17 noise conditions.
We further split the training set by gender and obtain 34 subsets as
the basic speech scenes for the synchronous HMMs.

The baseline HMMs are obtained following the standard Au-
rora 2 recipe for the complex back end. Each digit is modeled by
the whole word left-to-right HMM, consisting of 16 states and 20
Gaussian components per state. Besides, a 3-state silence model
and a 1-state short pause model with 36 Gaussian components per
state are used. Each feature vector consists of 13 mel-cepstral coef-
ficients (including zeroth order for the energy term), and their delta
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Fig. 4. Example of a speech scene decision tree. The questions used
to split the nodes relate to speaker gender (S), noise type (N), and
noise levels (SNR), separately. The non-leaf nodes are indexed in
the order of splitting precedence.

and delta-delta coefficients. Features are normalized by CMN in the
sentence level. The HMM baseline yields word error rate (WER) of
7.53% by averaging over SNRs between 20 and 0 dB of three test
sets.

First, we generate the synchronous HMMs using the global
speech scene decision tree. Fig. 4 shows an example of the decision
tree which results in six speech scenes. As can be seen, the most
useful questions that split the trees are concerned with noise types
and speaker genders. Also, the decision tree grows in a symmet-
ric fashion. In particular, the left subtree of the root node, which
involves all the noise-corrupted speech, is expanded layer by layer
(shown partially in Fig. 4).

By modifying the stop criterion for the speech scene clustering,
the synchronous HMMs with different numbers of speech scenes are
prepared for the evaluation, as shown in Table 1. Due to the sym-
metric structure of the decision tree, we can encode the clustering
results for those selective numbers of speech scenes with a shorthand
notation as in the second column of the table. It is observed that as
the number of the speech scenes increases, the performance of the
synchronous models is gradually improved. Specifically, the syn-
chronous HMMs using 18 speech scenes achieve the lowest WER of
6.25%, 17% relative reduction over the baseline HMMs. We do not
see that the speech scene clustering would improve the recognition
performance over the unclustered 34-scene system. This implies that
the training data in the Aurora 2 corpus are sufficient for reliably es-
timating the mixture weights of 34 speech scene sub-models. We
also observe that the multiplex Viterbi algorithm greatly improves
the decoding speed in comparison with the standard Viterbi for de-
coding K HMM sets.

Table 1. WER (%) and decoding time (times the HMM baseline) of
the synchronous HMMs with different numbers of speech scenes on
the Aurora 2 task.

# of Set of scenes WER Avg.
scenes time

1 — 7.53 1.0
2 {cln, no cln} 7.07 1.6
6 {Female, Male} × {cln, sbw|exh, bbl|car} 6.61 2.5

10 {Female, Male} × {cln, 6.38 3.3{sbw|exh, bbl|car} × {15-20 dB, 5-10 dB}}

18 {Female, Male} × {cln, 6.25 5.0{sbw, bbl, car, exh} × {15-20 dB, 5-10 dB}}
34 All combinations 6.27 7.9

Since the speech scene sub-models in the synchronous HMMs
differ only in the mixture weights, it is worth investigating the dis-
tribution of the mixture weights. Fig. 5 shows the mixture weights
of the substates for a particular state in the 34-scene system. We see
that the mixture weights are sparse and each substate only relates to a

Fig. 5. Magnitudes of the mixture weights of the substates for a
particular state in the 34-scene system. The rows correspond to the
speech scenes, which are sorted according to gender, noise type, and
noise level. The darker the color, the more prominent the weight is.

small number of Gaussian components. This is in contrast to the con-
ventional Gaussian mixture HMMs, where the mixture weights for
each state are approximately equal and noninformative. Moreover,
the substates for female and male speech largely involve different
Gaussian components.

The multiplex Viterbi search can be accelerated by pruning un-
likely speech scenes. Table 2 presents the WER and the decoding
time of the synchronous system with varying scene pruning thresh-
olds. The system is constructed by first generating 18 speech scenes
using the global decision tree and then clustering the substates of
individual states, which produces 8.8 tied substates per state in aver-
age. It is shown that few search errors occur when the scene pruning
threshold is 50 or larger. In particular, at the pruning threshold of
100, the decoding search takes 2.0 times the HMM baseline decod-
ing time, saving the computational cost with a factor of 9 compared
with the simple multi-model approach.

Table 2. WER (%) and decoding time for the multiplex Viterbi with
different scene pruning thresholds on the Aurora 2 task. The syn-
chronous HMMs consist of 18 speech scenes, 8.8 tied substates per
state in average.

Scene pruning threshold WER Avg. time
— 6.25 3.0
100 6.25 2.0

50 6.35 1.7
20 6.81 1.4

6. CONCLUSION
In this paper, we have proposed the synchronous HMM by intro-
ducing an additional substate layer into the standard HMM. The
speech scene decision tree is proposed to determine the optimal set
of speech scenes and tie the substate parameters. Moreover, we pro-
pose a novel multiplex Viterbi algorithm that performs an effective
decoding on the synchronous HMM. Our experiments on the Aurora
2 database have showed the synchronous HMMs achieve the lowest
WER of 6.27%, 17% relative reduction over the baseline HMMs.
By jointly applying the speech scenes decision tree, the multiplex
Viterbi, and the speech scene pruning, the decoding time of the 18-
scene synchronous models is reduced to 2.0 times the HMM baseline
decoding time, saving the computational cost with a factor of 9 com-
pared with the simple multi-model approach.
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