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ABSTRACT
We present a Bayesian framework to learn prior and posterior
distributions for latent variable models. Our goal is to deal
with model regularization and achieve desirable prediction
using heterogeneous speech data. A variational Bayesian
expectation-maximization algorithm is developed to establish
a latent variable model based on the exponential family distri-
butions. This algorithm does not only estimate model param-
eters but also their hyperparameters which reflect the model
uncertainties. The uncertainty is compensated to construct a
variety of regularized models. We realize this full Bayesian
framework for uncertainty decoding of speech signals. Com-
pared to maximum likelihood method and Bayesian approach
with heuristically-selected hyperparameters, the proposed
method achieves higher speech recognition accuracy espe-
cially in case of sparse and noisy training data.

Index Terms— Bayesian Learning, Exponential Family,
Latent Variable Model, Speech Recognition

1. INTRODUCTION

In general pattern recognition, we aim to establish a con-
cise and analytically tractable model from the collected
data. However, in real world, training data may be abun-
dant, sparse, noisy, mislabeled, misaligned, mismatched or
ill-posed. The probabilistic models may be improperly-
assumed, underestimated or overestimated. It is crucial to
build a scalable and regularized model from heterogeneous
training data. Considering the uncertainty in model con-
struction is essential to achieve model robustness in adverse
environments. Bayesian learning provides a powerful mecha-
nism to fulfil model regularization [1] for pattern recognition
including speech recognition [5][13][14][16][17], document
categorization [2] and many others [12]. An important issue
in Bayesian learning is to determine uncertainty [7][11] or
prior distribution for a specific task at hand. This issue can be
tackled as follows. First, we may adopt a prior model which
is mathematically attractive for model inference. Then, we
select the prior distribution or estimate its hyperparameters.

Thanks to F. Soong and Y. Zhang for helpful discussion.

Prior selection can be done either subjectively based on some
background knowledge or objectively via empirical Bayes
where prior is learnt from data. More attractively, the full
Bayesian framework [1][12] could be applied to estimate hy-
perparameters by maximizing an evidence function which is
calculated from training data. No validation data is needed.
This framework has been successfully developed for linear
regression/classification models [1], neural network model
[12], support vector machine [10] and topic model [2].

In this study, we conduct Bayesian learning for a wide
range of latent variable models based on the exponential fam-
ily distribution. Our idea is to find the distribution estimates
for a given model where the hyperparameters of prior distri-
butions are estimated by maximizing the evidence function
or the likelihood function which is marginalized over the
latent mixture variables as well as the model parameters. A
variational Bayesian expectation-maximization (VB-EM) al-
gorithm [6][9] is developed for implementation of Bayesian
latent variable models. Compared to the point estimates
based on maximum likelihood (ML) or maximum a poste-
riori (MAP) criteria, this method is promising to realize the
regularized models for robust speech recognition. The exper-
iments on noisy speech data confirm the benefits of Bayesian
approaches to model regularization and speech recognition.

2. BAYESIAN FRAMEWORK

2.1. Bayesian Learning

Figure 1(a) depicts graphical representation for Bayesian
learning where the parameter θ of a single probabilistic model
is assumed to be random and is governed by a prior distribu-
tion with hyperparameter η. Given a set of training vectors
X = {x1, · · · , xN} and a prior distribution p(θ|η), there
are two Bayesian inference problems: 1) Model estimation
in which we evaluate the posterior distribution p(θ|X,η) =
p(X|θ)p(θ|η). The conjugate prior, which ensures a poste-
riori distribution having the same functional form as the prior,
is usually selected. Accordingly, we can rewrite p(θ|X,η)
as p(θ|η̃) with the updated hyperparameter η̃. 2) Prediction
in which we evaluate the probability of a newly observed
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x, namely p(x|X,η) =
∫
θ
p(x|θ)p(θ|X,η)dθ, which is a

marginal likelihood over model parameter θ. However, how
to determine the hyperparameter η is a critical issue. Heuris-
tically selecting η from validation data is impractical. We can
apply the ML type II estimation and learn the hyperparameter
by maximizing the marginal likelihood of training data X
given by a general latent variable model

ηML2 = argmax
η

∫
θ

p(X|θ)p(θ|η)dθ. (1)
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Fig. 1. Graphical model for Bayesian learning of (a)(b) a sin-
gle model and (c) a latent variable model

2.2. Probabilistic Distribution

The exponential family distribution [1] provides a general
representation of probabilistic models, ranging from multino-
mial distribution to Gaussian distribution, by using

p(x|θ) = h(x) exp{θT u(x)− g(θ)} (2)

where u(x) is a function of x and g(θ) is a normalization term.
Using ML estimation, the sufficient statistics plays an impor-
tant role because it summarizes training data X using a com-
pact value in a form of γ[u(x)] where γ[u(x)] =

∑N
n=1 u(xn)

and γ[1] = N . The ML estimate θML satisfies ▽g(θML) =
γ[u(x)]/γ[1]. In addition, the conjugate prior for the expo-
nential family distribution is given by

p(θ|χ, v) = exp{χTθ − vg(θ)− b(χ, v)} (3)

where the hyperparameter is defined by η = [χT , v]T . This
prior also belongs to the exponential family with the ex-
tended parameter vector s(θ) = [θT ,−g(θ)]T , i.e. p(θ|η) =
exp{ηT s(θ) − b(η)}. By combining likelihood function of
training data X and conjugate prior, the posterior distribution
is calculated as a new exponential family distribution with the
updated hyperparameters χ̃ = χ+γ[u(x)] and ṽ = v+γ[1].
Here, v reveals an effective number of pseudo-observations
in the prior.

2.3. A General Bayesian Model

As shown in Figure 1(b), we empirically estimate the hy-
perparameter from a set of K models with parameters

{θ1, · · · ,θK} which are calculated from the associated train-
ing datasets {X1, · · · , XK} where Xk = {xnk}. The objec-
tive of marginal likelihood in (1) turns out to be F(η) =∏K

k=1

∫
θk
p(Xk|θk)p(θk|η)dθk where model parameters

{θ1, · · · ,θK} are treated as hidden variables. EM algo-
rithm [6] can be applied to find optimal hyperparameter
η̂. In E-step, we evaluate an auxiliary function Q(η|η(t))
of current hyperparameter η given the old hyperparam-
eter η(t) at the tth iteration. This function is calculated
as an expectation of the logarithm of marginal likelihood
with respect to latent variables, which is proportional to∑K

k=1

∫
θk
p(θk|Xk,η

(t)) ln p(θk|η)dθk. Considering the
probabilistic model in (2) and its conjugate prior in (3), the
resulting posterior distribution is yielded as a new expo-
nential family distribution p(θ|Xk,η

(t)) , p(θ|η̃(t)
k ) with

η̃
(t)
k = [(χ̃

(t)
k )T , ṽ

(t)
k ]T . As a result, we may treat θ as data

point. Maximizing Q(η|η(t)) is equivalent to finding ML
type II solution ηML2 given the training data points drawn
from empirical distribution

∑K
k=1 p(θ|η̃

(t)
k ). In M-step, we

maximize Q(η|η(t)) with respect to η and find new estimate
η(t+1) at the (t+ 1)th iteration which satisfies

⟨s(θ)⟩p(θ|η(t+1)) =
1

K

K∑
k=1

⟨s(θ)⟩
p(θ|η̃(t)

k )
(4)

where ⟨·⟩ denotes an expectation operation. New hyperpa-
rameter η(t+1) is estimated by matching the expectation of
s(θ) with the ensemble average of K expectations given the
old posterior parameters η̃(t)

k . Right-hand-side of (4) is seen
as the sufficient statistics for finding ηML2 from K samples
{θk}. This solution is coincident with the prior estimation
through the matching of statistics. Notably, we only visit the
training data once to collect statistics {γk[u(x)],γk[1]}. The
computational complexity is O(

∑K
k=1Nk) which is the same

as that of ML training.

2.4. Concavity Analysis

For concavity analysis, we calculate the Hessian matrix of
auxiliary function Q(η|η(t)) with respect to η and obtain
▽2Q = −K2covp(θ|η)[s(θ)] which is semi-negative definite
because the covariance matrix is semi-positive definite. We
assure a global optimum of Q in each iteration. In addition,
the Hessian matrix of the original objective ▽2 lnF(η) can be
derived as

∑K
k=1(covp(θ|η̃k)

[s(θ)] − covp(θ|η)[s(θ)]) where
covp(θ|η̃k)

[s(θ)] and covp(θ|η)[s(θ)] are both semi-positive
definite. There is no conclusion drawn on their difference.
However, the posterior distribution becomes sharper as more
data are observed. In an extreme case, if we have infinite data,
p(θ|η̃) converges to δ(θ−θMAP) where θMAP is the MAP es-
timate, and covp(θ|η̃)[s(θ)] converges to 0. Thus, we can treat
lnF as concave in most practical cases.
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3. BAYESIAN LATENT VARIABLE MODEL

We extend this full Bayesian framework [1] to establish a
mixture model of exponential family distributions. A graph-
ical representation for Bayesian latent variable model is de-
picted in Figure 1(c). Different from Figure 1(b), the obser-
vation x is not only generated by a set of mixture parameters
Θ = {θ1, · · · ,θK} but also by the latent variable label z
through p(x|z,Θ) =

∏K
k=1 p(x|θk)

zk where p(x|θk) belong
to the exponential family and z comes from a multinomial dis-
tribution p(z|ω = {ωk}) = Mult(z;ω). For Bayesian learn-
ing, we adopt conjugate prior p(θ|η) in (3) for exponential
family parameter θ and use the conjugate prior p(ω|α) =
Dir(ω;α) for multinomial parameter ω with hyperparameter
α. Given a set of training data X = {x1, · · · , xN}, the joint
distribution p(X,Z,Θ,ω|η,α) is calculated by

N∏
n=1

Mult(zn;ω)
K∏

k=1

p(xn|θk)
znkp(θk|η)Dir(ω;α). (5)

ML type II estimates of two hyperparameters {ηML2,αML2}
are calculated by optimizing the likelihood

∑
Z

∫
Θ

∫
ω
p(X,Z,

Θ,ω|η,α)dΘdω which is marginalized over three latent
variables {Z,Θ,ω}.

3.1. Variational Inference

EM algorithm should be applied to solve this incomplete data
problem. However, due to the coupling of three latent vari-
ables, the joint posterior distribution p(Z,Θ,ω|X,η(t),α(t))
is intractable. E-step can not be realized. Therefore, we resort
to the approximate inference using variational Bayesian (VB)
method [1][2][15][16] where the factorization of posterior
distribution p(Z,Θ,ω|X,η(t),α(t)) =

∏N
n=1

∏K
k=1 q̂(znk)

q̂(θk)q̂(ωk) is assumed. Using VB-EM algorithm, the
hyperparameters are estimated by maximizing the lower
bound of log marginal likelihood or equivalently mini-
mizing the Kullback-Leibler divergence between true pos-
terior p(Z,Θ,ω|X,η(t),α(t)) and approximate posterior
q(Z)q(Θ)q(ω). In VB E-step, the optimal solution to varia-
tional distribution q(Z) is derived as

ln q̂(Z) ∝ ⟨ln p(X,Z,Θ,ω|η,α)⟩p(Θ,ω)

∝
N∑

n=1

K∑
k=1

znk ln ρnk ,
N∑

n=1

K∑
k=1

ln q̂(znk)
(6)

where ln ρnk = ⟨lnωk⟩p(ω|α(t)) + ⟨ln p(xn|θk)⟩p(θ|η(t))

and rnk , q̂(znk) = ρnk/
∑K

k′=1 ρnk′ is a responsibility
of the kth latent variable on the nth sample. Similarly, we
can derive the other two variational distributions q̂(θk) and
q̂(ωk). Using this model, the sufficient statistics is refined
as γ̃k [u(x)] =

∑N
n=1 rnku(xn) with an additional weight

rnk. Notably, the optimal factorized posteriors are now

analogous to the posterior distributions in auxiliary function
Q(η|η(t)) except that the sufficient statistics is updated as
γ[u(x)] ← γ̃[u(x)]. Next, the VB-M step is implemented
by maximizing again the lower bound given q̂(Z)q̂(Θ)q̂(ω)
so as to find hyperparameters {η̂, α̂}. This step is similarly
performed by (4). As shown in Table 1, Bayesian latent vari-
able model is implemented by a two-stage procedure. First,
we calculate rnk by using current distributions p(θ|η(t)) and
p(ω|α(t)). Next, we find new estimates η(t+1) and α(t+1)

by using the posterior statistics computed via γ̃[u(x)].

Table 1. VB inference for Bayesian latent variable model
for each VB-EM iteration

VB-E step:
for each xn, 1 ≤ n ≤ N

given {η(t),α(t)}, calculate rnk

calculate {γ̃k[u(x)], γ̃k[1]} w.r.t rnk

VB-M step:
given {γ̃k[u(x)], γ̃k[1]}, solve η(t+1), set η(t) ← η(t+1)

given γ̃k[1], solve α(t+1), set α(t) ← α(t+1)

3.2. Case Studies

We have presented a Bayesian latent variable model based
on the exponential family which could be realized into many
Bayesian models including latent Dirichlet allocation (mix-
ture of multinomial distributions) [2], mixture of Gaussian
distributions (MoG) and hidden Markov model (HMM) [16].

In MoG model, the likelihood function of D-dimensional
observation is given by p(x|θ) =

∑K
k=1 ωkN (x;µk,Λ

−1
k )

with mixture weight ωk, mean vector µk and precision
matrix Λk. The conjugate prior for multinomial param-
eter ωk is known as a Dirichlet distribution and that for
Gaussian parameters is given by a Gaussian-Wishart distri-
bution p(µ,Λ|ν,W, β, τ) = N (µ;ν, (βΛ)

−1
)W(Λ;W, τ)

where W is a Wishart distribution with a D × D symmet-
ric, positive definite matrix W and a degree of freedom τ .
The responsibility rnk in VB E-step is determined based
on log variational parameter ln ρnk which is calculated by
adding the expected log probabilities ⟨lnωk⟩p(ω|α(t)) and
⟨ln p(xn|µk,Λk)⟩p(µ,Λ|ν(t),W (t),β(t),τ (t)) to obtain [1]

ψ(α
(t)
k )− ψ(

K∑
k′=1

α
(t)

k′ ) +
1

2
[

D∑
i=1

ψ(
τ
(t)
k + 1 + i

2
) + ln |W (t)

k |

−D(lnπ + (β
(t)
k )−1)− τ (t)k (xn − ν

(t)
k )TW

(t)
k (xn − νk)

(t)]

(7)

where ψ(α) , d
dα ln Γ(α) denotes the digamma function. As

βk and τk increases in (7), ρnk gets closer to a sharp Gaussian.
In the other extreme case, if τk → 0+ or βk → 0+, which
implies that prior density p(µ,Λ|ν,W, β, τ) is extremely un-
certain, ρnk will yield the same value for all samples xn.

Considering the HMMs with output distribution as a la-
tent variable model of the exponential family distributions,
we can apply VB-EM algorithm in Table 1 and construct
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the regularized HMMs where the optimal hyperparameters
are estimated from training data X . Given a L-state HMM
with initial state probabilities π = {πi}1≤i≤L, state tran-
sition probabilities A = {aij}L×L and output distributions
B = {

∑K
k=1 ωikp(x|θik)}1≤i≤L, the full Bayesian frame-

work [1] for HMMs can be implemented. In VB E-step,
we conduct the standard Baum-Welch algorithm and calcu-
late ρnik for state i by (7) and determine the variational state
occupation probability rnik. Meanwhile, we collect the statis-
tics {γ̃ik[u(x)], γ̃ik(1)} for all mixture probabilities p(x|θik).
In VB M-step, the optimal hyperparameters are estimated by
using these statistics. A special case of HMMs with MoG
output distributions was addressed in [16][17].

Fig. 2. Effect of hyperparameters for Gaussian distribution.

Table 2. Word accuracy (%) versus no of training utterances
no of utterances (CT) no of utterances (MT)

100 500 2000 8440 100 500 2000 8440
ML 23.3 46.9 48.8 63.9 56.7 70.0 75.6 88.8

Bayesian I 38.2 53.0 53.5 66.1 64.2 72.1 76.8 89.2
Bayesian II 41.8 51.7 53.9 66.2 64.3 71.6 76.6 89.1
Bayesian III 45.9 55.4 54.7 66.4 64.1 68.9 74.2 88.8

Full Bayesian 52.1 56.8 55.5 67.1 65.9 72.6 77.2 89.2

4. EXPERIMENTS

4.1. Effect of Hyperparameters

We first illustrate the Bayesian framework for Gaussian distri-
bution. In this experiment, three 2-dimensional, diagonal co-
variance Gaussians share an identical Gaussian-Wishart prior.
The illustration for four training conditions are shown in Fig-
ure 2(a)-(d), in which the training samples belong to different
Gaussians are marked by their point types. The optimal hy-
perparameters β̂ and τ̂ are displayed. We take (a) as a base-
line condition, which yields the optimal ν̂ = (−0.217, 1.64)
and Ŵ = diag(0.593, 0.523). We investigate three other con-
ditions. Condition (b) is set up by taking away some sam-
ples of class ‘◦’ from condition (a). As a result, the optimal
ν̂ = (0.219, 1.65), Ŵ = diag(0.801, 0.524) are estimated so
as to reflect the Gaussians with more training samples. In con-
dition (c), the three Gaussians are moved closer to each other,
which leads to a larger hyperparameter β̂ = 0.354. This is
reasonable because we are more confident to locate the po-
sition of the Gaussian. In condition (d), three Gaussians are

distorted to have more similar covariances. The estimated hy-
perparameter is increased as τ̂ = 13.44 which results in a
more confident estimation of covariance matrix. In summary,
Bayesian framework could flexibly reflect the model uncer-
tainty and estimate an appropriate prior density in various
conditions. This framework is helpful for Bayesian learning
with evolved hyperparameters [3].

4.2. Noisy Speech Recognition

We further evaluate the proposed algorithm by using Aurora2,
a connected-digit noisy speech recognition task. The HMMs
were constructed for each of eleven digits ranging from ‘zero’
to ‘nine’, and ‘oh’. The 3-component MoGs with diagonal co-
variance matrices were adopted as the output distributions for
all HMM states. Each sample xn consisted of 39-dimensional
features based on MFCCs and their dynamic features. We
trained the hyperparameters of HMMs, and then in test phase,
the uncertainty decoding algorithm using marginal likelihood
as shown in [3][4][5][8][16] was performed. The conditions
of clean training (CT) and multi-conditional training (MT)
were examined. There were 8440 utterances collected in dif-
ferent noise conditions. We set up the training conditions with
100, 500, 2000 and 8440 utterances. We compare the aver-
aged word accuracies (%) over three systems: (a) ML train-
ing, (b) Bayesian training with heuristic hyperparameter [16],
in which ν and W are obtained by statistics matching while
β and τ are selected between 0.001 and 10 [16], and (c) full
Bayesian training with learning of hyperparameters. In case
of Bayesian I, the best hyperparameters β = τ = 0.1 for
MT condition are selected. In Bayesian III, the best hyper-
parameters β = τ = 2.0 for CT condition are selected. In
Bayesian II, the intermediate hyperparameters β = τ = 0.5
are specified. The results with CT and MT training modes are
reported in Table 2. Note that the best heuristically-selected
hyperparameters β and τ differ significantly for CT (2.0) and
MT (0.1). Improvement is obvious in case of small amount of
training data. However, an inappropriate hyperparameter may
lead to even worse performance than ML training. Hyperpa-
rameters should be data-driven and adaptive for different con-
ditions. The proposed full Bayesian framework is beneficial
to achieve this goal. Our performance is better than conven-
tional Bayesian learning via hyperparameter selection.

5. CONCLUSIONS

We concerned the model regularization and presented the
general solution to Bayesian latent variable model where the
exponential family distribution was adopted. We derived a
VB-EM algorithm to estimate the hyperparameters where
the computation cost was similar to that of ML training.
Proposed algorithm has the potential for modeling the uncer-
tainty in different latent variable models and has improved
the robustness for noisy speech recognition.
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