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ABSTRACT

The generic REMOS (REverberation MOdeling for robust Speech

recognition) concept is extended in this contribution to cope with

additional noise components. REMOS originally embeds an ex-

plicit reverberation model into a hidden Markov model (HMM) lead-

ing to a relaxed conditional independence assumption for the ob-

served feature vectors. During recognition, a nonlinear optimiza-

tion problem is to be solved in order to adapt the HMMs’ output

probability density functions to the current reverberation conditions.

The extension for additional noise components necessitates a mod-

ified numerical solver for the nonlinear optimization problem. We

propose an approximation scheme based on continuous piecewise

linear regression. Connected-digit recognition experiments demon-

strate the potential of REMOS in reverberant and noisy environ-

ments. They furthermore reveal that the benefit of an explicit rever-

beration model, overcoming the conditional independence assump-

tion, increases with increasing signal-to-noise-ratios.

Index Terms— automatic speech recognition, reverberation ro-

bustness, noise robustness, uncertainty decoding, piecewise linear

regression

1. INTRODUCTION

When moving from close-talking to distant-talking automatic speech

recognition (ASR), the ASR system will usually have to deal with

additional background noise and reverberation, which significantly

reduce the recognition performance if no countermeasures are taken.

Such countermeasures are usually distinguished as to whether they

act on the speech signals, the speech features, or the ASR models [1].

The REMOS concept [2] directly acts on the ASR models. Orig-

inally, REMOS has been designed to individually adapt clean-speech

HMMs to a reverberant scenario in each step of the Viterbi decoder.

To this end, the dispersive effect of reverberation on the feature

vector sequence is explicitly modeled through a mapping function

relating the reverberant observation to the underlying clean-speech

sequence and a reverberation model. During the Viterbi decod-

ing, the observation likelihood is evaluated by approximating the

marginal integral by the maximum integrand resulting in an opti-

mization problem, where the mapping function acts as nonlinear

constraint. In [3], an efficient scheme is proposed allowing for a

global solution of the constrained optimization problem.

The authors would like to thank the Deutsche Forschungsgemeinschaft
(DFG) for supporting this work (contract number KE 890/4-1).

‡At the time the work has been conducted, the authors were with the
institute of Multimedia Communications and Signal Processing, Erlangen.

In this contribution, the REMOS concept is extended to cap-

ture additive noise components by incorporating a noise model into

the mapping function. The noise model comprises the mean and

variance of the additive distortion in the feature domain. As the

extension of the mapping function directly affects the constrained

optimization problem, the originally derived solver [3] is to be

adapted. We, therefore, introduce a novel continuous piecewise lin-

ear regression technique similar to the K-means algorithm in order to

approximate the mapping function and, hence, allow for an efficient

decoding. The experimental results reveal that the REMOS concept

outperforms the constrained maximum likelihood linear regression

(CMLLR) technique [4] in the case of static features. Moreover, the

benefit of an explicit reverberation model, overcoming the HMMs’

conditional independence assumption, increases with increasing

signal-to-noise-ratios (SNRs).

The paper is structured as follows: After clarifying notational

conventions in Section 2, the REMOS concept is concisely reviewed

in Section 3. The proposed extension for additive noise is presented

in Section 4 together with the novel regression technique. Connected

digit recognition experiments are discussed in Section 5 and Sec-

tion 6 concludes the paper.

2. NOTATION

Throughout this paper, we stick to the following notational conven-

tions: Feature vectors are D-dimensional and denoted by bold-face

letters v[n] = (v1[n], ..., vD[n]) with time index n ∈ {1, ..., N}.

Feature vector sequences are written as v[1 :N ] = (v[1], ...,v[N ]).
Every feature vector v[n] without the explicit subscript “m” is meant

to be in the logarithmic melspectral (logmelspec) domain, whereas

vm[n] denotes the melspectral (melspec) representation of v[n]. The

operators “exp” and “log” applied to vectors are meant to be applied

component-wise. The operator “⊙” denotes the component-wise

vector multiplication (Hadamard product). Without distinguishing

a random variable from its realization, a probability density func-

tion (pdf) over a random variable z is denoted by p(z). For a nor-

mally distributed random vector z with mean µ
z
= (µz1 , ..., µzD )

and diagonal covariance matrix Cz = diag(cz1 , ..., czD ), we write

z ∼ N (µ
z
,Cz) or p(z) ∼ N (µ

z
,Cz).

3. REVIEW OF THE REMOS CONCEPT

As other uncertainty decoding techniques [5], REMOS is based on

an observation model relating clean and corrupted feature vectors
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while incorporating the environmental uncertainty as random vari-

able. More precisely, the REMOS concept assumes an observed re-

verberant feature vector ym[n], the underlying hidden clean-speech

vector xm[n] and a statistical reverberation model to be related by a

discrete convolution in the melspec domain [2]:

ym[n] = hm[n]⊙ xm[n] + am[n]⊙
L∑

l=1

αm[l]⊙ x̂m[n− l],

which correspondingly reads in the logmelspec domain:

y[n] = log(exp(h[n] + x[n]) + exp(a[n] + r[n])) (1)

with the late reverberant part

r[n] = log

(
L∑

l=1

exp(α[l] + x̂[n− l])

)

(2)

and the previous clean-speech estimates x̂[n−L :n−1]. The rever-

beration model is to be estimated once per acoustic environment

and consists of a random vector h[n] ∼ N (µ
h
,Ch) describing

the early part of the room impulse response (RIR), a random vec-

tor a[n] ∼ N (µ
a
,Ca) describing the weighting of the late part of

the RIR, and the parameters α[1 :L] providing a deterministic de-

scription of the late part of the RIR.

For the Viterbi decoding, the emission likelihood of the observa-

tion y[n] given the current HMM state q[n] is accordingly evaluated

as

p(y[n]|q[n]) =

∫ ∫ ∫
p(y[n]|x[n],h[n], a[n]) ·

· p(x[n]|q[n]) · p(h[n]) · p(a[n]) dx[n] dh[n] da[n],

where the integrals are approximated by the maximum value of the

integrand [1]:

max
x[n],h[n],a[n]

{
p(x[n]|q[n]) · p(h[n]) · p(a[n])

}
s. t.: (1) (3)

and the previous clean-speech estimates x̂[n−L :n−1] in (2) are

obtained during the optimization process for the L previous frames

along the most likely Viterbi path [2].

Assuming HMMs with a single Gaussian output pdf per state

and diagonal covariance matrices, i.e.,

p(x[n]|q[n]) ∼ N (µ
x|q [n],Cx|q[n]),

the optimization problem (3) reduces to the following subproblem

for each logmelspec channel i ∈ {1, ..., D}:

min
ui[n],vi[n]

{
(ui[n]− µui

[n])2

2cui
[n]

+
(vi[n]− µvi [n])

2

2cvi [n]

}

s. t.: exp(ui[n]) + exp(vi[n]) = 1, (4)

where we define

u[n] = h[n] + x[n]− y[n],

v[n] = a[n] + r[n] − y[n],

µ
u
[n] = µ

h
+ µ

x|q[n]− y[n],

µ
v
[n] = µ

a
+ r[n]− y[n],

Cu[n] = Ch +Cx|q[n],

Cv[n] = Ca. (5)

Once the optimum u[n], v[n] are determined, the corresponding op-

timum x[n],h[n], a[n] can be derived in a straightforward man-

ner [2].

4. EXTENSION FOR ADDITIVE NOISE

This section details the methodology for extending the REMOS con-

cept to additive noise. After incorporating an explicit noise com-

ponent into the observation model, the modified solution scheme

for the extended optimization problem is formulated, necessitating

a continuous piecewise planar approximation (CPPA) of the obser-

vation model. For the sake of readability, we omit the explicit time

dependency n throughout this section.

4.1. Extended observation model

We extend the REMOS observation model (1) by assuming the noise

components to be additive in the melspec domain and, hence, log-

additive in the logmelspec domain:

y = log(exp(h+ x) + exp(a+ r) + exp(b)), (6)

where the additive noise component b is again modeled as normally

distributed random vector b ∼ N (µ
b
,Cb). Proceeding along the

same lines as before, (3) now reads

max
x,h,a

{
p(x|q) · p(h) · p(a) · p(b)

}
s. t.: (6) (7)

leading to the following normalized subproblem for each logmelspec

channel i ∈ {1, ..., D}:

min
ui,vi

{
(ui − µui

)2

2cui

+
(vi − µvi)

2

2cvi
+

(wi − µwi
)2

2cwi

}

s. t.: exp(ui) + exp(vi) + exp(wi) = 1, (8)

where we introduced analogously to (5)

w = b− y, µ
w

= µ
b
− y, Cw = Cb. (9)

4.2. Solution scheme for the optimization problem

As the Lagrange system of (8) is analytically intractable, an approx-

imative numerical scheme is proposed. Aiming for a global solu-

tion, [3] showed the benefit of deriving an approximative solver tai-

lored to the optimization problem (4) compared to a generic numer-

ical solver, such as an inner point optimizer. We therefore construct

a novel numerical solver for (8) based on a CPPA of the nonlinear

constraint. To this end, we consider the 3D curve in Fig. 1. (a) as a

family of 2D curves. This corresponds to considering, e.g., ui and

vi as variables in (8) while regarding wi as parameter. Hence, the

CPPA of the 3D curve is broken down to a continuous piecewise lin-

ear regression problem of a family of 2D curves for various values

of wi, as described in Section 4.3. Once one decided for a certain

number of sub-planes, the CPPA is fixed. During recognition, solely

the normalization steps (5) and (9) are to be adapted and the opti-

mization problem is to be solved on each sub-plane of the CPPA in

order to determine a global solution.

4.3. Continuous piecewise linear regression

In this section, the channel index i is omitted for brevity. We focus

on the problem of approximating the exponential curve defined by

(8) for a given value of w and therefore rewrite (8) as function of u
with parameter w:

v = log(1− exp(u) + exp(w)) =: f(u). (10)
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Fig. 1. Constraint equation of the optimization problem (8) in its (a)

3D version and (b) sampled cross-section including its continuous

piecewise linear approximation.

Since the approximation will be based on a least-square error (LSE)

measure and the integral over f(u) is analytically intractable, we de-

fine a set of regression points u(m) ∈ R, for which f(u) is evaluated:

U =
{
u(1), ..., u(M)

}
with u(1) < ... < u(M). The approximation

of (10) by a continuous piecewise linear function consists of two

steps:

1. At first, the set of points U needs to be divided intoK subsets

U1, ...,UK , where any two subsets Uk−1,Uk (2 ≤ k ≤
K) corresponding to two adjacent regression line segments

overlap in exactly one point as depicted in Fig. 1. (b).

2. Secondly, the parameters αk, βk of the regression line seg-

ments gk,

gk(u) = αku+ βk for u ∈ Uk,

have to be determined on each subset Uk.

While [3] used a brute force approach to determine the subsets Uk,

we propose a novel regression technique named gradient cluster re-

gression that iteratively fulfills the two above-mentioned steps in a

similar way to the K-means algorithm [6]. In analogy to K-means,

we start by defining a cost function to be minimized, which we

choose as the conventional LSE of the exact function and its ap-

proximation subject to a continuity constraint:

J :=
M∑

m=1

K∑

k=1

rmk

∣∣∣f(u(m))− gk(u
(m))

∣∣∣
2

with gk−1 = gk on Uk−1 ∩ Uk for 2 ≤ k ≤ K.

The binary variable rmk indicates which subset Uk a given point

u(m) is assigned to, i.e., which regression line segment gk it con-

tributes to form:
rmk = 1 ⇐⇒ u(m) ∈ Uk,

rmk = 0 ⇐⇒ u(m) /∈ Uk.

The determination of rmk is denoted as the expectation (E) step and

aims at identifying the most significant outliers for each regression

line segment in order to reassign them to a “more suitable” segment.

This is achieved by “clustering” all points according to their gradient

value relative to the regression line gradients:

E: For fixed regression line parameters αk, βk, a given point

u(m) is assigned to the subset Uk with the regression line

segment gk having the closest gradient value, i.e.,

rmk =





1 if k = argmin

j

∣∣∣f ′(u(m))− βj

∣∣∣,

0 otherwise.

Room Type T60 d DRR

R1 conf. room 600 ms 2.0 m + 0.5 dB

R2 conf. room 700 ms 2.0 m - 0.5 dB

R3 lecture room 900 ms 4.0 m - 4 dB

Table 1. Summary of room characteristics: T60 is the reverberation

time, d is the distance between speaker and microphone, and DRR

denotes the direct-to-reverberation ratio.

To ensure the continuity of the overall approximation, the

smallest point u(m) of a subset Uk is also assigned to Uk−1,

i.e., to the adjacent regression line segment gk−1.

The E step is followed by the update of the parameters of each re-

gression line segment gk in the maximization (M) step:

M: For fixed assignments rmk, the minimization of J with

respect to the regression line parameters results in a con-

strained optimization problem with analytically solvable

Lagrange system.

The E and M steps are alternately repeated until a desired conver-

gence property is fulfilled.

Without giving the detailed proof of convergence, we briefly

summarize its main steps: For a given iteration, let u(m) be the in-

tersection point of the line segments gk−1 and gk, i.e., {u(m)} =
Uk−1 ∩ Uk, and furthermore

∣∣∣f ′(u(m−1))− βk

∣∣∣ <
∣∣∣f ′(u(m−1))− βk−1

∣∣∣ .

Consider adding u(m−1) to Uk and removing u(m) from Uk−1 in

the E step. The update of the regression line parameters in the sub-

sequent M step then leads to an LSE reduction by δk−1 on the subset

Uk−1 while increasing the LSE on Uk by δk. Exploiting the strict

monotonicity of f and f ′, it can be shown that |δk| < |δk−1|.

5. EXPERIMENTS

Experiments with the TI digit corpus [7] are carried out to analyze

the performance of REMOS with the added noise model. This task

is chosen for evaluation since the probability of the current digit can

be assumed to be independent of the preceding digits so that the

recognition rate is entirely determined by the quality of the acoustic

model.

5.1. Experimental setup

The training data comprises solely clean-speech TI digits. The test

data are artificially reverberated with measured RIRs and mixed with

continuous streams of real noise recordings from the ANITA (Audio

eNhancement In Telecom Applications) database [8]. Two differ-

ent kinds of babble noise conditions are considered: cafeteria and

railway hall noise, both scaled relative to the TI digits recordings to

achieve SNRs from 0 to 15 dB. The RIRs are measured at differ-

ent loudspeaker and microphone positions in three rooms with the

characteristics given in Table 1. Each test utterance is convolved

with an RIR selected randomly from a number of measured RIRs

in order to simulate changes of the RIR during the test. While the

RIRs for the rooms R1 and R2 are taken from the RWCP sound scene

database [9], the RIRs for the most reverberant room R3 are recorded

in a lecture hall of the University of Erlangen-Nuremberg [2].

The REMOS recognizer is implemented by extending the decod-

ing routines of HTK [10]. REMOS is realized for 24 static logmel-

spec features with a single Gaussian (1G) output pdf per HMM state.
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Fig. 2. Word accuracies for the different test conditions.

For the derivation of the noise model, the first and the last 5 frames

of each utterance are assumed to contain only noise and used to esti-

mate the mean µ
b

and variance Cb in the logmelspec domain. The

reverberation model is estimated using RIRs measured at slightly

different loudspeaker-microphone positions [2].

To obtain baseline results for reference, we considered two

clean-speech recognizers based on Gaussian mixture models with

3 Gaussian components (3G) per HMM state. Both recognizers

are adapted to the test data by performing supervised CMLLR [11]

based on 100 adaptation utterances. They solely differ in the em-

ployed feature set: While the static CMLLR recognizer uses 13 static

mel frequency cepstral coefficients (MFCCs), the full CMLLR rec-

ognizer employs 13 MFCCs, 13 delta (∆) and 13 acceleration (∆∆)

coefficients together with cepstral mean normalization (CMN) [12].

5.2. Experimental results

The word accuracies for the three recognizers are depicted in Fig. 2.

It can be seen that the proposed extension of REMOS consistently

outperforms the static CMLLR recognizer for SNRs greater than

0 dB. In the case of an SNR of 0 dB, the performance of the RE-

MOS and the static CMLLR recognizer differ only slightly. We fur-

thermore note that the highest gains – relative to the static CMLLR

recognizer – are achieved in the case of strong reverberation and high

SNRs (Fig. 2 (e) and (f)), where the word accuracies of REMOS are

closest to ones achieved by the full CMLLR recognizer.

For the interpretation of these results, we need to consider

the different structure of the observation models of REMOS and

CMLLR: While CMLLR is based on an affine model relating only

the current clean and current corrupted feature vector, REMOS

explicitly models the dispersive character of reverberation by con-

sidering not only the current but also the previous feature vectors

(2). Thus, REMOS conceptually extends the conventional HMM

structure in order to overcome the conditional independence as-

sumption, that is well-known to be strongly violated in the presence

of reverberation [1].

We can therefore conclude from the experimental results that in

the case of low SNRs the harming reverberation tail, violating the

conditional independence assumption, is considerably masked lead-

ing to a lower inter-frame correlation compared to high SNRs. As

a consequence, the convolutive reverberation model of REMOS gets

all the more beneficial – relative to the affine model of CMLLR –

with increasing SNR. The promising results for the considered log-

mel features and single Gaussian densities indicate that an exten-

sion of REMOS to the MFCC domain and Gaussian mixture den-

sities will allow for further improvement in ASR performance. We

finally like to point out that the noise and reverberation model of

REMOS comprises L × D + 6 × D parameters to be estimated,

whereas CMLLR necessitates the estimation of D×D/3+D adap-

tation parameters (for MFCC+∆+∆∆) per regression class [13].

For typical values of L = 50, D = 39, and, e.g., 32 regression

classes [11], REMOS would thus condense the environmental influ-

ence into 2,184 parameters at the cost of an increased computational

load, while CMLLR would comprise 17,472 parameters requiring a

higher amount of adaptation data.

6. RELATION TO PRIOR WORK

As mentioned in the introduction, the concepts for robustifying an

ASR system are typically distinguished as to whether they act on

the speech signals, the speech features or the ASR models. While

a variety of signal enhancement algorithms has been proposed to

jointly tackle the problems of additive and long convolutive dis-

tortions [14–22], only very few approaches simultaneously address

both aspects in the feature or model domain.

To the authors’ best knowledge, there are mainly two such ap-

proaches operating in the feature domain: While [23] combines

multistep linear prediction with particle filters, [24, 25] propose a

Kalman filter-based framework incorporating a joint speech, noise,

and RIR model.

Turning to the model-based approaches, [26] exploits the energy

components of previous frames to adapt the HMM while also stipu-

lating an additive noise term. Based on the parallel model combina-

tion procedure, [27] proposes to adapt the HMM parameters using

an exponentially decaying RIR model together with a noise spectral

estimate. Recently, [28] introduced both an extension to the vector

Taylor series and to the CMLLR approach in order to jointly com-

pensate for additive noise and reverberation.

The major difference of the proposed REMOS concept to the

existing model-based approaches is two-fold: First of all, REMOS

estimates the reverberation tail from the most likely Viterbi path.

Secondly, the influence of both the room acoustics and the addi-

tive noise sources are modeled by random variables, i.e., from an

uncertainty decoding perspective. Hence, REMOS allows for an in-

dividual adaptation of the HMMs’ output pdfs in each step of the

Viterbi decoder while coping at the same time for the uncertainty of

the time-varying reverberation and noise components.
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