
APPROXIMATED PARALLEL MODEL COMBINATION FOR EFFICIENT NOISE-ROBUST
SPEECH RECOGNITION

Khe Chai SIM

School of Computing, National University of Singapore
Computing 1, 13 Computing Drive, 117417 Singapore

ABSTRACT

Parallel Model Combination (PMC) and Vector Taylor Se-
ries (VTS) are two model-based approaches for noise-robust
speech recognition. The latter is more popular because of
its simple compensation formulae for both the static and
dynamic parameters. Furthermore, this VTS compensation
formulation can be easily extended to noise adaptive train-
ing where the parameters of the underlying pseudo-clean
speech and distortion models can be optimized. PMC lacks
the above benefits because of its nonlinear variance com-
pensation formula. In this paper, the Approximated PMC
(APMC) method is proposed where linearized PMC variance
compensation is used. The same approximation has also been
applied to Trajectory-based APMC (TAPMC) to achieve a
four-time computational saving over the Trajectory-based
PMC (TPMC). The dynamic parameter compensation and
noise re-estimation formulae for APMC are also derived.
Experimental results on AURORA 4 show that APMC and
TAPMC consistently outperformed the standard VTS and
Trajectory-based VTS (TVTS) by 6.3% and 5.3% relative
respectively.

Index Terms— Noise robust speech recognition, vector
Taylor series, parallel model combination, trajectory-based
compensation

1. INTRODUCTION

Most state-of-the-art speech recognition systems use the Hid-
den Markov Model (HMM) [1] to represent phonemes. The
observation distribution for each HMM state is represented by
a Gaussian Mixture Model (GMM) [2]. Parallel Model Com-
bination (PMC) [3, 4] and Vector Taylor Series (VTS) [5] are
two well-known model-based approaches for improving the
noise robustness of HMM-based speech recognition. Using
the first order Taylor series approximation, the VTS compen-
sation formulae for both the static and dynamic parameters
are much simpler and computationally more efficient com-
pared to PMC. In particular, the cost of performing trajectory-
based compensation [6] using PMC is significantly higher due
to the higher dimensional cepstral trajectory statistics. Fur-
thermore, the simple VTS formulation allows the underlying

pseudo-clean speech models and distortion parameters to be
updated using maximum likelihood estimation. This is essen-
tial for Noise Adaptive Training (NAT) [7].

One of the major drawbacks of PMC is its complex non-
linear variance compensation formulae. Such complexity
leads to a much higher computational cost and complicates
the compensation of the dynamic parameters. In this pa-
per, the Approximated PMC (APMC) method is proposed
to mitigate this problem by simplifying the variance com-
pensation formulae of PMC through linearization of the exp
and log functions. Incidentally, the resulting variance com-
pensation is very similar to that of VTS. Therefore, APMC
and be viewed as a hybrid between PMC and VTS. With
the simplified variance compensation, the dynamic parame-
ter compensation formulae as well as the noise mean update
formulae for APMC can also be derived.

The remainder of this paper is organized as follows. Sec-
tion 2 compares VTS and PMC in terms of the compensation
formulae and the computational costs. Section 3 describes
the proposed Approximated PMC (APMC) technique. Sec-
tion 4 presents the re-estimation formulae for the noise mean
using APMC. Section 5 presents the experimental results on
the AURORA 4 dataset.

2. VTS VERSUS PMC

Parallel Model Combination (PMC) [3, 4] and Vector Tay-
lor Series (VTS) [5] are two well-known model-based noise
compensation techniques. The former uses a log normal
approximation to convert the cepstral statistics into linear
spectral statistics so that noisy speech statistics can be eas-
ily derived from clean speech and noise statistics. VTS, on
the other hand, uses the Taylor series expansion to approx-
imate the relationship between the noisy speech data and
the clean speech data so that simple compensation formulae
can be derived. VTS can also be used to easily compensate
the dynamic parameters using continuous time approxima-
tion [5]. Although continuous time approximation can also
be applied to PMC [3], the resulting compensation formulae
are quite complex. Trajectory PMC (TPMC) [6] and Ex-
tended VTS [8] have recently been proposed to mitigate the
complex dynamic compensation problem by representing the
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observation (static and dynamic) statistics as trajectory (ex-
tended) statistics. These approaches, which avoid the need
to deal with dynamic parameter compensation directly, have
been shown to outperform standard PMC and VTS compen-
sations. Although the PMC and VTS methods are based on
quite different formulations, their compensation formulae
are somewhat similar. In the following, a closer comparison
between PMC and VTS is presented.

2.1. Vector Taylor Series (VTS)

The VTS formulation is based on the approximation of the re-
lationship between the noisy speech data and the clean speech
data using vector Taylor series expansion [5]. This leads to
the following VTS compensation formulae:
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respectively in the cepstral domain1. The non-linear function
g(·) is given by
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whereC andC† denote the truncated Discrete Cosine Trans-
form (DCT) used to compute the cepstral parameters and the
corresponding pseudo-inverse.The channel JacobianGm and
the noise Jacobian Fm are given by
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diag(x) converts a vector x into a diagonal matrix whose
leading diagonal elements are given by x.

2.2. Parallel Model Combination (PMC)

As previously mentioned, PMC is based on the log-normal
approximation to convert the statistics between the cepstral
domain and the linear spectral domain so that speech statistics
can be easily modified given the channel and noise statistics.
The statistics conversion formulae from the cepstral domain
(c) to the linear spectral domain (s) are given by:

µ(s) = exp

C†µ(c) +
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[
Σ(l)

]
2

 (6a)
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)
M (s) (6b)

1Superscript (c) is used to denote cepstral domain variables.

where Σ(l) = C†Σ(c)C†> denotes the covariance matrix
in the log spectral domain. M (s) is a diagonal matrix such
that µ(s) = diag−1(M (s)). The corresponding conversion
formula from linear spectral to cepstral domains are given by:
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where V (s) = M (s)−1Σ(s)M (s)−1. The compensation due
to additive noise can be performed easily in the linear spectral
domain as follows:
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By combining all the steps (Eq. 6, Eq. 7 and Eq. 8) together,
the overall PMC compensation formulae can be written as2:
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where Ĝm and F̂m are computed using Eq. 5 except that
µ̄

(c)
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2.3. Comparison of Computational Complexities

Note that Eq. 9a is very similar to Eq. 1a except that:

1. g(·) is computed using µ̃(c)
mhn instead of µ̄(c)

mhn

2. there is an additional term 1
2 diag−1

[
Σ(l)

m

]
The above two additional items require the diagonal elements
of Σ(l)

m and Σ(l)
n to be computed with O(DcDl) complexity,

where Dc and Dl are the dimensions of the cepstral and log
spectral domains. However, due to the expensive operations
of log(·) and exp(·), the covariance matrix compensation of
PMC in Eq. 9b is computationally much more expensive than
that of VTS in Eq. 1b. The difference becomes more apparent
when performing trajectory-based compensation.

2The channel distortion mean is also included for completeness.

7384



3. APPROXIMATED PMC (APMC)

Due to the expensive computational cost for compensating the
covariance matrices using PMC, an variant of PMC, called
Approximated PMC (APMC), is proposed, where the approx-
imations log(·) and exp(·) are used. log(x + 1) ≈ x and
exp(x)− 1 ≈ x. Therefore, Eq. 9b can be approximated as

Σ̂
(c)

m ≈ G̃mΣ(c)
m G̃m

> + F̃mΣ(c)
n F̃m

> (10)

where G̃m and F̃m are computed based on µ̃(c)
mhn. Note that

the resulting covariance matrix compensation formula is very
similar to that of VTS as shown in Eq. 1b. Therefore, APMC
can be regarded as a hybrid between PMC and VTS. The
mean compensation formulae for APMC is the same as that

of the standard PMC in Eq. 9a, except that Σ̂
(l)

m is computed
using the new compensated covariance matrix in Eq. 10. Be-
sides reducing the computational cost of variance compen-
sation, the approximation in Eq. 10 also allows the dynamic
covariance matrices to be compensated using the same con-
tinuous time approximation technique as VTS. Furthermore,
the dynamic mean and variance compensation for APMC can
also be derived by differentiating Eq. 9a and Eq. 9b:
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The same approximation can also be applied to the recently
proposed Trajectory-based PMC (TPMC) [6] method. The re-
sulting method will be referred to as Trajectory-based APMC
(TAPMC). Since variance compensation needs to be applied
to the variances at each time instant of the trajectory as well
as the covariance between different time instances, the com-
putational cost of TPMC compensation is much higher. Con-
sequently, the approximation applied to TAPMC leads to a
substantial saving in computation (see Fig. 1 in Section 5).

4. NOISE RE-ESTIMATION

The noise parameters can be re-estimated by maximizing the
likelihood using the Baum-Welch algorithm [7]. The auxil-
iary function to be optimized is given by:
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where the sufficient statistics for component m are given by
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γm(t) is the posterior probability of component m at time
t, obtained from the forward-backward algorithm [9]. The
noise mean update formula can be obtained by equating the
differential of Q with respect to µ(c)

n to zero. It turns out that
the update formula for the noise mean is similar to that of the
standard VTS [7], except that the noise Jacobian matrix, F̃m

is computed differently for APMC:
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The noise variance can be updated using the Newton method [7].
However, due to the complexity of the update formula, it will
not be considered in this paper.

5. EXPERIMENTAL RESULTS

In this section, experimental results on the AURORA 4
database [10] are reported. Two sets of training data (clean
and multi-noise) were used. Each set comprises 7138 train-
ing utterances (approximately 12 hours of speech, 84 speak-
ers). The multi-noise training set contains clean and noisy
speech data. Six different noises were artificially added to
the clean data recorded at randomly chosen signal-to-noise
ratios (SNR) between 10 and 20 dB. The average SNR of the
test data was 15 dB. System evaluation involves performing
continuous speech recognition using a 5000-word vocabulary
on 330 test utterances for each noise condition. The 330
utterances contain recordings from 8 speakers with about 40
utterances per speaker. Only the 16 kHz testing data recorded
from the first microphone at an average SNR of 10 dB were
used for the following evaluation. This paper only considers
the effects of additive noise.

The baseline clean and multi-noise systems were HMM-
based cross-word triphone systems trained using HTK [11].
Decision tree state clustering [12] was used to obtain about
3000 distinct states. Each state is represented by a 16-
component GMM. The acoustic features used had 39 di-
mensions including 12 Mel Frequency Cepstral Coefficient
(MFCC) [13] and the C0 energy as well as the first and sec-
ond order dynamic features. Table 1 compares the Word Error
Rate (WER) performance of different model compensation
techniques. PMC uses Eq. 9a and Eq. 9b to compensate the
static parameters and the VTS compensation formulae for
the dynamic parameters. For each of the noise compensa-
tion techniques, two types of noise models were evaluated.
The INIT noise model was estimated using the leading and
trailing 20 frames of observations of the utterances for each
noise conditions. Starting with the INIT noise model, three
Baum-Welch iterations were performed to re-estimate the
noise mean only for each utterance. The re-estimation for
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Compensation Noise WER (%)
Model Model clean car babble restaurant street airport train average
Clean — 6.0 36.6 52.6 50.3 61.3 45.6 59.9 44.6

Multi-noise — 7.9 9.3 14.2 20.1 19.9 12.6 19.7 14.8

VTS INIT 7.1 11.3 15.9 20.6 19.3 16.5 19.8 15.8
VTS 6.3 10.1 14.7 19.4 16.9 15.0 18.2 14.4

PMC INIT 7.0 10.6 15.1 19.7 18.2 15.7 19.5 15.1
VTS 6.3 9.4 14.2 18.3 16.8 14.1 17.7 13.8

APMC INIT 7.0 10.4 15.3 19.7 18.0 15.9 19.1 15.1
APMC 6.4 9.4 13.8 18.0 16.3 13.8 16.9 13.5

TVTS INIT 7.2 9.2 14.6 18.0 17.2 14.5 17.9 14.1
VTS 6.3 9.1 14.2 16.8 15.7 13.3 16.9 13.2

TPMC INIT 6.3 8.5 13.9 17.1 16.7 13.7 16.6 13.3
VTS 6.2 8.4 13.5 16.1 15.4 13.0 16.0 12.6

TAPMC INIT 6.9 9.3 13.8 16.5 15.4 13.2 16.6 13.1
VTS 6.3 8.6 13.2 15.8 14.3 12.9 16.6 12.5

Table 1. WER (%) performance of various systems for different testing conditions on AURORA 4.

Fig. 1. Average durations (milliseconds) and the correspond-
ing standard deviations for different compensation methods.

APMC is performed using the formula presented in Sec-
tion 4. For the other compensation methods, the noise model
re-estimated using VTS was used. The recognition outputs
obtained from the corresponding INIT compensated systems
were used as the supervision for noise re-estimation. In
general, all the noise compensation methods achieved sig-
nificant performance improvements over the uncompensated
clean system. With the initial noise estimation (INIT), VTS
achieved an average WER performance of 15.8% while PMC
and APMC achieved 15.1%. Trajectory-based approaches
gave better performances of 14.1%, 13.1% and 13.3% for
TVTS, TAPMC and TPMC respectively. Noise re-estimation
gives consistent absolute WER reductions between 0.6%–
1.6%. Despite the approximation, both APMC and TAPMC
achieved similar performance compared to PMC and TPMC
respectively.

Finally, Fig. 1 compares the computational complexity
of different compensation methods. The mean and standard
deviation of the times taken to compensate 60320 Gaussian
components in the system are measured on a Mac Pro server
with two 2.93 GHz Quad-core Intel Xeon CPU and 8 GB
memory. PMC and APMC took about the same time for com-
pensation, which are slightly slower than VTS due to the addi-
tional terms that PMC and APMC needs to compute for mean
compensationxt. Likewise, TAPMC is also slightly slower
than TVTS. However, TPMC is almost four times slower than
TAPMC due to the expensive variance and covariance com-
pensation in the cepstral trajectory domain [6]. Therefore,
the approximations applied to TAPMC has significantly im-
proved its computational efficiency while retaining similar
performance to TPMC.

6. CONCLUSIONS

This paper has presented the Approximated PMC (APMC)
method, a modified version of PMC that approximates the
compensation formulae of the variances to improve computa-
tional efficiency and allow simple compensation formulae to
be derived for the dynamic parameters using continuous time
approximation. The recently proposed trajectory-based com-
pensation approach has also been applied to APMC to yield
Trajectory APMC (TAPMC) so that an improved compensa-
tion for the dynamic parameters can be achieved. Experimen-
tal results on AURORA 4 show that APMC and TAPMC con-
sistently outperformed VTS and TVTS. Despite the approx-
imation, TAPMC retains the performance of TPMC while
achieving almost four times speed up in compensation time.
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