RECURRENT NEURAL NETWORKS FOR VOICE ACTIVITY DETECTION

Thad Hughes and Keir Mierle*

Google, Inc.
thadh @ google.com, mierle @ gmail.com

ABSTRACT

We present a novel recurrent neural network (RNN) model
for voice activity detection. Our multi-layer RNN model, in
which nodes compute quadratic polynomials, outperforms a
much larger baseline system composed of Gaussian mixture
models (GMMs) and a hand-tuned state machine (SM) for
temporal smoothing. All parameters of our RNN model are
optimized together, so that it properly weights its preference
for temporal continuity against the acoustic features in each
frame. Our RNN uses one tenth the parameters and outper-
forms the GMM+SM baseline system by 26% reduction in
false alarms, reducing overall speech recognition computation
time by 17% while reducing word error rate by 1% relative.

Index Terms— Voice activity detection (VAD), endpoint-
ing, recurrent neural networks (RNNs)

1. INTRODUCTION

Speech is a complex audio signal influenced by many fac-
tors, including speaker characteristics and environmental con-
ditions. As a pre-processing step before automatic speech
recognition (ASR), it is useful to determine which portions of
audio contain speech, both to reduce ASR computation and to
guide speech user interfaces. This classification, called voice
activity detection (VAD), is difficult because of the wide vari-
ation of speech and non-speech signals.

Current VAD techniques typically use a classifier to make
speech/non-speech predictions about each audio frame inde-
pendently, together with a temporal smoothing scheme to re-
duce noise in the classifier’s output. One way to build a VAD
system involves two GMMs, one trained on speech frames
and the other on non-speech frames, to predict the per-frame
likelihood of speech, followed by an ergodic hidden Markov
model (HMM) that penalizes transitions between speech and
non-speech states to give temporal continuity to the predic-
tion [1]. Recent work has investigated both different kinds of
features and more powerful classifiers [2].

A problem inherent to many current VAD techniques is
that the models used for frame classification and temporal
smoothing cannot be easily optimized simultaneously. With
HMM-based smoothing, the Markov assumption postulates

*The second author performed the work while at Google, Inc.

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

7378

conditional independence of all observed frames given their
discrete hidden state. Further, common HMM training algo-
rithms like Baum-Welch [3] cannot learn a useful state space
from data; rather, they assume the state space is specified a
priori. In ASR, for example, phonetic lexicons and triphone
units [4] often help define the HMM’s state space. HMM
VAD systems typically have a small number of hidden states,
often just one for speech and one for non-speech. Using
more hidden states is possible, but unlike typical ASR training
where the transcription explicitly specifies a state sequence,
there is no straightforward way to decide which VAD HMM
states to use or how those states should relate to the train-
ing data. This imposes two related limitations on the HMM
VAD model: first, processing each frame independently fails
to account for the lack of temporal conditional independence
of speech frames, and second, the small, discrete HMM state
space implies that the model cannot “remember” much about
the past. As in ASR, these limitations can be mitigated by
providing the classifier with several frames to give it more
temporal context, but this increases the number of parameters
and computational load.

RNNs address these limitations because they can be dis-
criminatively optimized for frame classification while simul-
taneously learning a useful, factored, continuous state space
and its non-linear temporal dynamics.

2. RECURRENT NEURAL NETWORK MODEL

RNNSs are parameterizable models representing computation
on data sequences. Like feed-forward neural networks (NNs),
which model stateless functions over R™ — R™, an RNN’s
computation is factored into nodes, each of which evaluates
a simple function mapping its input values to a single scalar
output. Unlike NNs, RNN nodes can receive input from nodes
at previous timesteps, which allows them to store and manip-
ulate state as they iteratively process sequences of inputs and
generate sequences of outputs. RNNs are thus closely related
to digital infinite impulse response (IIR) filters.

2.1. Quadratic nodes

Instead of the traditional weighted sum and non-linear activa-
tion of multi-layer perceptrons (MLPs) [5], our RNN nodes

ICASSP 2013

Timestep T-1

@} @] Output

(OO0 OO—00OOOQO)] pelaytaps

Pre-output

Timestep T

H1

HO

[OOO e O] PLP inputs

(000 -0

Fig. 1. Our architecture is a feed-forward NN with recur-
rence added at various points. Nodes marked with S have
tanh non-linearities; others achieve non-linearity by evaluat-
ing quadratic polynomial functions of their inputs.

compute quadratic functions of their inputs, followed by an
optional non-linearity:

V(z) = f (a" Wz + wiz + wg) 6))

A node computes its output value V' (z) from the vector
of its inputs using Eq. (1); W is an upper-triangular sparse
matrix with weights for quadratic terms, wy, is a vector of lin-
ear weights similar to those in MLPs, and wp is a scalar bias.
Motivating this approach is the idea that higher-order Taylor
polynomials can reasonably approximate more functions than
affine functions can. This representation can compute prod-
ucts, similar to the Multiplicative RNNs described in [6], and
such nodes can also evaluate the multidimensional Gaussian
density (and other radial basis functions), since N (z; p,X)
can be written exp(—z? X" tr + 2T e — pTE "y +
In(z)), where z is the Gaussian normalization constant.

2.2. VAD RNN architecture and initialization

Our RNN VAD architecture, shown in Fig. 1, is different from
the MLP-like RNNs others have applied to VAD [7, 8], speech
de-noising [9], and ASR [10] because it uses quadratic nodes
as described in section 2.1 and because the structure aug-
ments multi-layer feed-forward NNs with recurrent connec-
tions. The connectivity is depicted in Fig. 1, where an arrow
pointing towards a node indicates that the node receives as in-
puts the values of the nodes at the arrow’s tail. For example,
if H1[T] denotes a vector of the outputs of the nodes in layer
H1 at timestep 7', then for all nodes n in layer H 1, the input
vector 2, [T] (when evaluating Eq. 1) is shown in Eq. (2).
The arrows in Fig. 1 describe the connectivity of the net-
work but not its parameterization, which is defined by each

node’s weights: Wg, wr, and wp . A dense Wy can rep-
resent a more flexible network, but we choose to use spar-
sity based on our intuition that the product of a node’s output
at the current and previous timesteps would be most useful,
since those values are highly correlated. The sparsity pattern
of W, for all nodes in layer H1 is also shown in Eq. (2); other
layers follow the same pattern:

HO[T] I303 I323 0
z,[T]=| HO[T-1] |, sparsity(WQ):< 0 I3z3 O> (2)
H1[T—1] 0 00

Thus each node has quadratic weights in W¢ for the
squares of its vertical and diagonal input nodes, and the
products of pairs of the same input nodes from the current
(vertical) and previous (diagonal) timesteps. Each node also
has linear weights wy, for all its inputs, a bias wp, and a
trainable parameter for its initial value at timestep 7" — 1.

Our model is initialized as a feedforward NN, where the
linear weights in wy, for vertical inputs are randomly initial-
ized with zero mean and small variance, and horizontal and
diagonal linear weights in wz, and all weights in Wg and wp
are initialized to zero. However, the linear weights wy, asso-
ciated with the nodes in the tapped delay layer are initialized
with Os and 1s so that these nodes function as a “shift regis-
ter,” as described in [11]. This allows the final output node to
use 5 timesteps of recent history when computing its value,
similar to the baseline GMM VAD’s state machine smooth-
ing. However, the network is free to adjust the tap weights
(making it no longer a delay line) to improve the final error.

We compute the RNN’s error at each timestep by running
it on training data. For each timestep 7', we set the RNN’s
input nodes with the input features, compute each node’s out-
put using Eq. (1), and compute the difference of the RNN’s
output node Noupu[T'] with a slightly delayed target output:

Error[T| = Noupu[T] — Target[T — Al 3)

The fixed delay A allows the RNN to process input frames
up to T + A before outputting its decision about frame T,
giving it both extra context and extra timesteps to compute.
Unless otherwise noted, we use A = 10.

3. TRAINING PROCEDURE

We train our RNNs using supervised pairs of input and tar-
get output sequences. Unless otherwise noted, the inputs are
13-dimensional PLP features, without deltas or double-deltas.
The target output at each timestep is a single value indicating
whether the frame A timesteps ago is speech or non-speech,
and is generated by forced alignment of the audio with a hu-
man transcription using a monophone acoustic model.

7379

3.1. Ceres Solver

RNN training involves searching for parameter values that
make the RNN’s predicted outputs match the supervised
target outputs for the given input sequences. This is a
non-convex problem, but given a reasonable initialization,
a gradient-based approach often finds a good solution. We
use Ceres Solver [12], an open-source C++ non-linear least-
squares minimizer to perform this optimization. Similar
to [13], Ceres Solver is a Levenberg—Marquardt optimizer
that only requires the Jacobian matrix containing the partial
derivatives of each residual (error term) with respect to each
parameter. Ceres attempts to minimize the sum of the squares
of all errors from Eq. (3) over all utterances in the training
set, plus a scaled L?-norm of the RNN’s parameters.

3.2. Automatic differentiation

In addition to the residuals, Ceres also requires a Jacobian
matrix containing the first partial derivative of each residual
with respect to each parameter. Eq. (2) is recurrent because
node outputs are fed back as inputs, making Eq. (3) incon-
venient and error-prone to differentiate symbolically, so we
use forward automatic differentiation (autodiff) [14] to com-
pute these derivatives. Forward autodiff is beyond the scope
of this paper, but it allows us to re-use, literally in place, the
same C++ code that calculates the residuals in Eq. (3) to also
compute their exact first derivatives, which greatly simpli-
fies experimentation. The computation is equivalent to back-
propagation through time [5] (itself an instance of reverse au-
todiff), but forward autodiff is simpler to implement and more
efficient when the number of parameters is much smaller than
the number of residuals (which scales with the duration of the
training data).

3.3. Two-stage training

We perform two stages of training. In the first stage, we fix all
recurrent parameters and only train the feedforward parame-
ters (those associated with vertical arrows in Fig. 1). In this
stage, the RNN’s only memory is provided by the tapped de-
lay line’s fixed parameters. In the second stage, we optimize
all the parameters together, including the wj, weights control-
ling the tapped delay line. Like [10, 11], we found that this
scheme prevents the recurrent parameters from settling into
an irremediably poor local optimum early in the training.

4. EXPERIMENTS

We trained and evaluated several variations on our RNN ar-
chitecture, described in Table 1. The best variation, called
RNN 4, is exactly as described in Section 2.2. RNNp is iden-
tical to RNN 4, but trained with A = 5, so RNNp outputs
its decision after processing only 5 frames of future context
instead of the default 10. RNN(is like RNN 4, except that

Training convergence

1.1 T T T T T T T T
=— RNN, test e-e RNN, train
— RNNj test RNNj train H
— RNN, test RNN,, train
RNN,, test RNN,, train [

RMSE

03 1 1 1 1 1 1 1 1
0 200 400 600 800 10001200140016001800

Training time (s)

Fig. 2. RNNs A-C, with quadratic nodes and multiple
layers, converge faster and better than RNNp, with non-
quadratic nodes (yellow). Vertical lines mark the transition
from the first optimization stage (training only feed-forward
non-recurrent parameters) to the second stage (training all pa-
rameters together), and show the large benefit provided by the
recurrent parameters.

it omits the tapped delay line portion of the RNN, turning the
pre-output node into the final output and thus reducing the
number of parameters. RNNp uses a completely different,
more traditional MLP-like RNN architecture. The input layer
is expanded to 39 nodes by adding delta and double-delta fea-
tures (since the hidden layer cannot compute them in an obvi-
ous way), and there are 9 hidden nodes in a single layer, each
one computing an affine weighted sum of all current inputs
and all hidden nodes at the previous timestep (Wg = 0 for

’ Name ‘ Params ‘ FA % ‘ Description ‘

RNN 4 354 11.2
RNNp 354 12.5
RNN¢ 302 12.2

See Section 2.2.
Same as RNN 4, but with A = 5.
Same as RNN 4, but without tapped

delay line.

RNNp 402 29 Traditional non-quadratic RNN;
single hidden layer of 9 recurrent
nodes with tanh non-linearity; no
delay line.

39 PLP+delta+double-delta inputs.
GMM 4740 15.1 2x30-component diagonal GMMs
+SM with 39 PLP+delta+double-delta
features, plus SM with 15-40

timesteps of memory.

Table 1. RNN architectures, with number of parameters and
false accept rate (lower is better) when false reject is 2%.

7380

Frame cIaSS|f|cat|on error
T 1

GMM
GMM+SM
RNN,,
RNN,,
RNN,,
RNN,,

Frame false accept (FA) rate

$I11:

e
IRS

107

o~
Frame false reject (FR) rate

Fig. 3. Quadratic, multi-layer RNNs A-C' beat the GMM+SM
baseline (red) at our typical operating point of 2% FR (points
closer to the origin are better).

all nodes). Fig. 2 shows the training convergence for each of
these models when trained on 1000 utterances and tested on
another 1000 utterances, where approximately half the frames
are labeled as speech. The multithreaded training was done
using a single 12-core 2.67GHz CPU.

We compare the performance of the RNN systems against
a strong baseline: our GMM+SM system, which uses 13-
dimensional PLP features and their deltas and double-deltas,
combined with a hand-tuned state machine (SM) that per-
forms temporal smoothing by identifying regions where many
frames exceed a threshold, and emitting its decision with a 19
frame delay. The GMM portion of the baseline uses two 30-
component diagonal-covariance GMMs, trained using maxi-
mum likelihood estimation on speech and non-speech frames.
Fig. 3 shows that most of the RNN systems dominate the
GMM+SM baseline at almost all operating points. Since an
ASR system can recover more easily from false accept (FA)
errors than false reject (FR) errors, we target FR rate to around
2%.

Interestingly, RNN p, the traditional MLP-like RNN sim-
ilar to [7], performs conspicuously more poorly than the
other RNNs, which have multiple layers and quadratic nodes,
suggesting that these features may help the performance of
RNNs .

Finally, we evaluated the real-life performance of RNN 4
by embedding it in the ASR system described in [15] and test-
ing it on 27,000 utterances averaging 4.4 seconds in duration.
The RNN’s lower computational load and lower false accept
rate reduce overall ASR computation time by 17% (relative)
while modestly improving the word error rate (WER) by 1%
(relative).

Fig. 4 reveals how the RNN improves on the GMM+SM
baseline. The GMM speech posterior, shown at the top,

7381

GMM and RNN activations

GMM
GMM+SM
Truth
RNN

Taps

Pre-output
Hidden 1

Hidden 0

PLP inputs

0 100 200 300 400 500
Timestep

Fig. 4. GMM vs. RNN,4 activations for an utterance con-
taining the speech “hello world” show that RNN 4’s output
at higher levels becomes more stable and accurate than the
GMM’s speech posterior.

contains many spurious peaks that should not be labeled as
speech, whereas the RNN is able to eliminate many of them.
Note that the RNN’s pre-output still shows some of these
errors, but they are removed by the tapped delay line. In this
case the GMM+SM was also able to recover from the GMM’s
errors, but in other cases it cannot.

5. CONCLUSION

We have shown that our RNN architecture can outperform
considerably larger GMM-based systems on VAD tasks, re-
ducing the per-frame false alarm rate by 26% and thus in-
creasing overall recognition speed by 17%, with a modest 1%
relative decrease in the word error rate. Our RNN architec-
ture, with multiple layers and quadratic nodes, also seems to
outperform traditional MLP-like RNNs, which suggests ap-
plying it to other ASR-related tasks such as feature compu-
tation and acoustic modeling. The non-convexity of RNN
optimization also leaves open the possibility that combining
gradient-based optimization with less localized search tech-
niques such as genetic algorithms may find even better solu-
tions.

6. ACKNOWLEDGEMENTS

Thad Hughes would like to thank these people: Christopher
Manning and Daniel Jurafsky for introducing me to ASR and
factored graphical models, Stephen Boyd for teaching me dy-
namical systems and convex optimization, my colleagues at
Google, especially Sameer Agarwal, and my wife Carolina
Tropini for inspiring me every day!

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

7. REFERENCES

J. Sohn, N.S. Kim, and W. Sung, “A Statistical Model-
based Voice Activity Detection,” Signal Processing Let-
ters, IEEE, vol. 6, no. 1, pp. 1-3, 1999.

Ananya Misra,
Web Videos,”
2012.

“Speech/Nonspeech Segmentation in
in Proceedings of InterSpeech 2012,

L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A max-
imization technique occurring in the statistical analysis
of probabilistic functions of Markov chains,” The annals
of mathematical statistics, pp. 164-171, 1970.

Steve J. Young, J.J. Odell, and P.C. Woodland, “Tree-
based state tying for high accuracy acoustic modelling,”
in Proceedings of the workshop on Human Language

Technology. Association for Computational Linguistics,
1994, pp. 307-312.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning representations by back-propagating errors,”
Cognitive modeling, vol. 1, pp. 213, 2002.

Ilya Sutskever, James Martens, and Geoffrey Hinton,
“Generating Text with Recurrent Neural Networks,” in
28th International Conference on Machine Learning
(ICML), 2011.

R. Gemello, F. Mana, and R. De Mori, “Non-linear es-
timation of voice activity to improve automatic recog-

nition of noisy speech,” in Proceedings of Interspeech
2005, 2005.

G.D. Wu and C.T. Lin, “A recurrent neural fuzzy net-
work for word boundary detection in variable noise-
level environments,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 31, no.
1, pp. 84-97, 2001.

A. Maas, Q. Le, T. O’Neil, O. Vinyals, P. Nguyen, and
A. Ng, “Recurrent Neural Networks for Noise Re-
duction in Robust ASR,” in Proceedings of INTER-
SPEECH, 2012.

O. Vinyals, S.V. Ravuri, and D. Povey, “Revisiting Re-
current Neural Networks for Robust ASR,” in Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE In-
ternational Conference on. IEEE, 2012, pp. 4085-4088.

Oliver Obst and Martin Riedmiller, “Taming the Reser-
voir: Feedforward Training for Recurrent Neural Net-
works,” in Accepted at IICNN 2012, 2012.

Sameer Agarwal and Keir Mierle, Ceres Solver: Tuto-
rial & Reference, Google Inc.

7382

[13] James Martens and Ilya Sutskever, “Learning Recur-

rent Neural Networks with Hessian-Free Optimization,”
in 28th International Conference on Machine Learning
(ICML), 2011.

[14] L.B. Rall, “Automatic differentiation: Techniques and

applications,” 1981.

[15] Navdeep Jaitly, Patrick Nguyen, Andrew Senior, and

Vincent Vanhoucke, “Application Of Pretrained Deep
Neural Networks To Large Vocabulary Speech Recog-
nition,” in Proceedings of Interspeech 2012, 2012.

