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ABSTRACT

This paper presents a voice activity detection (VAD) approach
using convolutive non-negative sparse coding (CNSC) to im-
prove the detection performance in low signal-to-noise (SNR)
conditions. Our idea is to use noise-robust feature for speech
signal detection while noise is reduced away. We first use
magnitude spectrum as the non-negative and additive low-
level representation of audio signals, and learn a speech dic-
tionary from clean speech as well as a noise dictionary from
noise samples. Then, the two dictionaries are concatenated to
form a global dictionary, and an audio signal is decomposed
into coefficient vectors using CNSC on the global dictionary.
Only coefficients corresponding to the bases from the speech
dictionary are taken as the features for the signal. At last, the
activity labels is given by decoding a conditional random field
(CRF) which is constructed to model the context of an audio
signal for VAD. Experiments demonstrate that our VAD ap-
proach has an excellent performance in low SNR conditions.

Index Terms— voice activity detection, convolutive non-
negative sparse coding, conditional random fields

1. INTRODUCTION

Voice activity detection (VAD), to detect the presence of
speech in an audio signal degraded by noise, is widely ap-
plied in numerous modern speech communication systems.
In the last decade, since a statistical model based VAD ap-
proach with impressive performance was proposed by Sohn
et al. [1], many VAD algorithms focus on statistical model
based approaches which have the decision rules derived from
the likelihood rate (LR) to discriminate speech/nonspeech
[2–5]. Treating VAD as a binary classification problem, some
classifiers based on statistical learning theory were also em-
ployed [6–9]. For example, Jo et al. [8] introduced support
vector machines based VAD with feature vectors consisting
of LRs in each frequency bin. Concerning the context in an
audio signal, Saito et al. [10] developed a VAD system based
on conditional random fields (CRF) [11] using multiple pop-
ular features. Most of these methods adopt noise-sensitive
features, e.g., those depending on time-domain statistics,
frequency-domain energy, and correlation coefficients. To ad-

dress these issues, You et al. [12] proposed a VAD algorithm
based on the sparse coding of audio signals, showing good
robustness to noise in low SNR conditions.

Sparse coding is namely the linear decomposition of a
signal with a few weighted bases (so-called the sparseness
constraint) from an over-complete dictionary, so that the sig-
nal can be represented as sparse vectors (coefficient vectors)
consisting of these weights. Especially, sparse coding with
a learned dictionary instead of a predefined one (e.g., based
on wavelets) has recently led to state-of-the-art results in
numerous low-level signal processing tasks, such as image
denoising [13], audio processing [14] due to the noise-robust
representation provided by the coefficient vector. Besides the
sparseness, the non-negativity is another popular constraint
to the linear decomposition of signals. The non-negativity
constraint demands the dictionary and the coefficient vec-
tors are both non-negative. A linear decomposition with this
constraint, called nonnegative matrix factorization (NMF)
[15], gives “parts” based representation as only additive
combinations of bases are allowed in representation. Con-
strained by both the sparseness and the non-negativity, the
linear decomposition is namely non-negative sparse coding
(NSC) [16, 17]. Considering the temporal dependency in
audio signals, Wang [18] extended NSC to a more general
framework, called convolutive non-negative sparse coding
(CNSC), using a convolutive decomposition model instead of
the linear decomposition model. Recently, an online CNSC
algorithm [19] is developed. It has been employed in the
tasks of speech separation [19] and speech overlap detection
[20] with good performances.

In this paper we propose a VAD approach using CNSC
to improve the detection performance in low SNR conditions.
The improvement is achieved by adopting noise-robust fea-
tures while reducing the noise away from audio signals, which
was not considered in the earlier studies [1–10, 12] . First,
we use magnitude spectrum as the low-level representation of
audio signals. Magnitude spectrum is non-negative in its ele-
ments, and supposed to be approximatively additive between
two simultaneous audio signals, i.e., speech signals and noise
signals in the VAD task. Next, an over-complete convolu-
tive dictionary of speech signals (speech dictionary) is learned
from clean speech signals using CNSC, as well as a dictio-
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nary of noise signals (noise dictionary) is learned from noise
sample signals using convolutive NMF (CNMF). Then, we
concatenate the two dictionaries to form a global dictionary.
According to the global dictionary we decompose a given au-
dio signal using CNSC into a sequence of coefficient vectors.
Discarding the coefficients corresponding to the noise dictio-
nary, only coefficients corresponding to the speech dictionary
are selected as the noise-robust features of the signal. At last,
we train a CRF with a linear chain structure to model the cor-
relation between feature sequences and voice activity labels
along an audio signal. For a given audio signal, its voice ac-
tivity labels are obtained by decoding the CRF with the in-
put of its feature sequences. Experimental results show that
our VAD approach has an excellent performance in low SNR
conditions.

2. AUDIO SIGNAL ANALYSIS USING CNSC

Let X = [x1, · · · ,xt, · · · ,xT ] be the magnitude spec-
trum of an audio signal with T time frames, where xt =

[x
(1)
t , · · · , x(l)t , · · · , x

(L)
t ]> denotes the magnitude of the t-th

time frame; l is the frequency-bin index, and x(l)t ≥ 0. xt can
be approximated by a linear combination of an over-complete
set of bases dm with weights α(m)

t :

xt = Dαt, (1)

where D = [d1, · · · ,dM ],M > L, is called a dictionary,
αt = [α

(1)
t , · · · , α(M)

t ]> is called a coefficient vector. De-
noting A = [α1, · · · ,αT ], with the non-negativity constraint
D ∈ RL×M≥0 and A ∈ RM×T≥0 , the magnitude spectrum X
can be decomposed using non-negative matrix factorization
(NMF) as

X ≈ DA. (2)
With a typical sparseness constraint on A, this decomposi-
tion can be achieved by minimizing the distance between the
original matrix and its approximation:

(D̂, Â) = argmin
D,A

‖ X−DA ‖2F + λ
∑
ij

A(ij) (3)

where D̂ and Â are the estimated optimal values of D and A,
respectively, ‖ · ‖F denotes the Frobenius norm, A(ij) is the
ij-th elements of A, and the non-negative constant λ controls
the sparsity of A. This is so-called the non-negative sparse
coding (NSC) of audio signals, and it is equal to NMF when
λ = 0. However, the decomposition shown in Eq.(2) does not
consider the connections between the neighboring columns of
X which are essential to audio signals. To address this issue,
a convolutive variant of Eq.(2) is employed. The convolutive
NMF (CNMF) takes the form:

X ≈
R−1∑
r=0

Dr

r→
A , (4)

where R is the convolutive range, Dr ∈ RL×M≥0 . The op-

erator
r→· is column shift operator that shifts r columns of

the matrix to the right, and vacated columns are filled with
zeros. For simplicity, the R-cardinality dictionary set {Dr}
(r = 0, · · · , R − 1) for the R-range convolutive operator is
also called a dictionary, and the convolutive operator in Eq.(4)
is expressed as

X ≈ {Dr}⊗A. (5)
Convolutive NSC (CNSC) is namely CNMF with the sparse-
ness constraint. The dictionary {Dr} for CNSC can be
learned according to Eq.(6), and the decomposition of X with
a given {Dr} can be achieved according to Eq.(7), both using
the CNSC algorithm proposed in [18] or [19]. CNSC is equal
to CNMF when λ = 0.
{D̂r} = argmin

{Dr}
‖ X− {Dr}⊗A ‖2F + λ

∑
ij

A(ij) (6)

Â = argmin
A

‖ X− {Dr}⊗A ‖2F + λ
∑
ij

A(ij) (7)

3. AUDIO SIGNALS SPARSE DECOMPOSITION
FOR VAD

We propose a novel scheme of audio signals sparse decom-
position for VAD. The idea is to represent speech with noise-
robust features while noise is reduced away from the signals.
Since the magnitude spectrum of a noisy speech signals X can
be deemed as the sum of speech magnitude spectrum Xs and
noise magnitude spectrum Xn, we decompose X using CNSC
on a global dictionary formed by concatenating a speech dic-
tionary {Ds

r} and a noise dictionary {Dn
r}. This decompo-

sition can be formulated by

Xs +Xn = X ≈ {[Ds
r,D

n
r]}⊗

[
As

An

]
=
{
Ds

r}⊗As + {Dn
r}⊗An

(8)

where {Ds
r} is over-complete and learned from clean speech

signals using CNSC to obtain noise-robust bases for repre-
senting speech; {Dn

r} is low-rank and learned from noise
signal samples using CNMF so that it can fit noise well with
its few bases. X is decomposed into sparse coefficient vectors
consisting of two parts: the coefficients in As corresponding
to {Ds

r} and the coefficients in An corresponding to {Dn
r}.

In the ideal case (e.g., bases from the two dictionaries are dis-
tinctly dissimilar), these two parts of coefficients can repre-
sent the true contributions of bases from the two dictionaries
in constructing X, respectively,{

Xs ≈ {Ds
r}⊗As

Xn ≈ {Dn
r}⊗An

. (9)

If An is discarded, the noise is supposed to be reduced away,
leaving only the residual of fitting the noise with bases from
{Dn

r}. The residual can be deemed as white noise. Then,
As seems like to be obtained by decomposing a white noise
degraded speech signal on {Ds

r}. Therefore, under the as-
sumption described in Eq.(9), only As is considered in our
VAD approach and used as noise-robust features for X, inde-
pendently of the original noise.
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4. VAD CONTEXT MODELING BASED ON
CONDITIONAL RANDOM FIELDS

The goal of the VAD task is to give a sequence of voice
activity labels H = [H1, · · · , Ht, · · · , HT ] along a given
audio signal X where Ht ∈ {0, 1} indicates speech ab-
sence or presence at the t-th time frame xt. Let yt be an
observed feature vector derived from xt, and correspond-
ingly Y = [y1, · · · ,yT ] be an observed feature vector
sequence along X. We model the correlations between H
and Y using a graphical model with a linear chain struc-
ture, as shown in Fig.1. Let G = (V,E) be a graph and
H being indexed by the vertices of G, say Ht. A pair
(H,Y) is called a CRF, if when conditioning on Y, the
variables Ht obey Markov property with respect to the graph:
p(Ht|yt, HV−{t}) = p(Ht|yt, HNt

), where Nt is the set of
neighbors of node t and HNt is the joint vector of variables
in the subscript set. Let C(H,Y) be the set of maximal
cliques of G. Given an observation Y and parameters θ, the
distribution over a label sequence H can be defined as:

pθ(H|Y) =
1

Zθ(Y)

∏
c∈C(H,Y)

φcθ(Hc,yc) (10)

Zθ(Y) =
∑
H

∏
c∈C(H,Y)

φcθ(Hc,yc) (11)

where φcθ is the positive-valued potential function of clique c
and Zθ(Y) is the observation dependent normalization. For
a linear chain, i.e., first-order state dependency depicted
in Fig.1, the cliques include pairs of neighboring labels
(Ht−1, Ht) and feature-label pairs (Ht,yt). Therefore, for
a model with T time frames, the CRF in Eq.(10) can be
rewritten in terms of exponentiated feature functions Fθ as:

pθ(H|Y) =
1

Zθ(Y)
exp

(
T∑
t=1

Fθ(Ht−1, Ht,yt)

)
(12)

Zθ(Y) =
∑
H

exp

(
T∑
t=1

Fθ(Ht−1, Ht,yt)

)
. (13)

In our approach, Fθ is computed in terms of weighted sums
over the features of the cliques:

Fθ(Ht−1, Ht,yt) =
∑

b∈{0,1}2
γbfb(Ht−1, Ht)

+
∑

h∈{0,1}

L∑
l=1

βh,lgh,l(Ht, y
(l)
t )

(14)

where the two kind of feature functions are transition feature
functions fb(Ht−1, Ht) defined as

fb(Ht−1, Ht) =

{
1 if : b = [Ht−1, Ht]

0 otherwise
(15)

and observation feature functions gh,l(Ht, y
(l)
t ) defined by

gh,l(Ht, y
(l)
t ) =

{
y
(l)
t if : Ht = h

0 otherwise
(16)

HtHt -1H1 HT

y1 yt -1 yt yT

Fig. 1. Graphical model representation of CRF for VAD.

with parameters θ = {γb, βh,l}. Notice that the model
with tied parameters θ is used across all cliques, in order to
seamlessly handle models of arbitrary size, i.e., sequences
of arbitrary length. Assuming a fully labeled training set
{Hn,Yn}n=1,··· ,N , the CRF parameters θ can be obtained
by maximizing the conditional log-likelihood:

θ̂ = argmax
θ

N∑
n=1

log pθ(H
n|Yn) (17)

Likelihood maximization can be performed using a gradien-
t ascent method, e.g., BFGS [21]. With a trained CRF, let-
ting p(·) denote pθ̂(·) for simplicity, the best activity label
sequence Ĥ to a feature vector sequence Y can be decided
by decoding the CRF, i.e., solving

Ĥ = argmax
H

p(H|Y) (18)

using the well-known Viterbi algorithm similarly to that in
a hidden Markov Model. However, we use a soft decision
scheme instead of Viterbi algorithm. We employ the Forward-
Backward algorithm to calculate q = [q1, · · · , qt, · · · , qT ]
where qt = p(Ht = 1|yt−C , · · · ,yt+C) served as the a pos-
teriori of activity of the t-th time frame where C controls the
range of the context that is concerned. Then, we actually ob-
tain an activity label sequence Ĥ determined by a decision
threshold η:

Ĥt =

{
1 : qt ≥ η
0 : qt < η

, (19)

so that a trade-off between detection probability and false
alarm probability of VAD can be easily made with a tuned η.
In addition, Ĥ can be further smoothed for more reasonable
global decision.

5. EXPERIMENTS

TIMIT [22] corpus is used for the experiments with its word
transcription for the VAD evaluation. Three typical noise
sources from NOISEX-92 [23] corpus: the factory, white and
babble noise, are selected for the simulations of the practical
noisy environments. All recorded audio signals are sampled
at 16 kHz. We randomly select 128 sentences, 8 sentences
(excluding the two dialects) spoken by each of 16 speakers
from TIMIT TEST set. 64 sentences from half of the speakers
are concatenated as a long utterance with silence of random
length added between each two sentences, and the other 64
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Fig. 2. ROC curves to evaluation of CNSC based VAD under
factory (a), white (b) and babble (c) noises, respectively, at
SNR = 0 dB.

sentences are concatenated in the same manner. These two
long utterances are about 338 seconds and 331 seconds long
and with 51.6% and 50.3% of speech signals, respectively.
We add white noise to the first long utterance at SNR = −5
dB served as the only training utterance of the CRF. We add
factory, white and babble noise to the second long utterance at
SNR = 0 dB , respectively, obtaining three noisy utterances to
simulate speech signals recorded in real noise environments.
The noise adding is implemented by using FaNT [24].

For an audio signal, Short Time Fourier Transform
(STFT) is performed with the analysis window of length
32 ms and the window shift of 16 ms. Magnitude spectrum is
the magnitude square values of the STFT out. For computa-
tional simplicity, the magnitude spectrum for each time frame
is reduced to a 22-dimension vector where each element is the
average of magnitude spectrum placed on each critical band
of Bark frequency scale from 20 Hz to 8000 Hz. The speech
dictionary {Ds

r} is learned using an online CNSC algorithm
[19] from 3696 sentences, 8 sentences spoken by each of
462 speakers from the TIMIT TRAIN set with parameters of
M = 80, R = 4 and λ = 0.01. The noise dictionary {Dn

r}
for a certain type of noise is learned using the same algorithm
from the noise samples in NOISEX-92 with parameters of
M = 5, R = 4 and λ = 0.

The CRF is trained independently of noise, using the
white noise degraded−5 dB long utterance mentioned above.
The reason is twofold. First, once specific noise is fitted by
the noise bases (which are learned from the noise itself) then
reduced, there is still residual left in the signals. We deem
the residual as white-like noise, so that {Ds

r} is similar to
extracted from signals degraded by white noise. Second, a
proper low-SNR training utterance is also benefit of good
noise robust. Therefore, we decompose the training utterance
only on {Ds

r} using CNSC, and use the resulting coefficient
vector sequence to train the CRF.

For a noisy utterance, {Dn
r} is learned first, and then

concatenated with {Ds
r} to construct the global dictionary.

Then, the decomposition of the utterance is performed ac-
cording to Eq.(8), and As is used as the input Y of the CRF.
q is calculated with C = 8, and Ĥ is determined by a given
η. We use an optional smoothing post-process where we con-
strain the detected durations of speech presence or absence
are longer than 0.5 secs. The detection probability and false
alarm probability of our approach are exploited to evaluate
the performance. In addition, Sohn’s VAD approach [1] is
exploited as the baseline, and You’s VAD approach [12] us-
ing the same 22-dimension reduced magnitude spectrum as
ours is implemented by ourselves for comparison. The ROC
curves of our VAD approach (with and without the smoothing
post-process) compared with Sohn’s and You’s under differ-
ent noises at SNR = 0 dB are illustrated in Fig. 2. It is demon-
strated that our approach outperforms the baseline and further
improves the VAD performance in factory and white noises
conditions. However, our approach degrades in babble noise.
This is because that in such conditions the learned noise bases
are extremely similar to combinations of some speech bases,
which causes much confusion in the decomposition with a
sparseness constraint. This issue will be considered in our
future work.

6. CONCLUSION

We have proposed a VAD approach using CNSC to improve
the detection performance under low SNR noisy conditions
by adopting noise-robust feature for speech signal detection
while reducing noise contribution away. We have learned
an over-complete speech dictionary from clean speech using
CNSC, as well as a low-rank noise dictionary from noise sam-
ples using CNMF. Then, we concatenate the two dictionar-
ies as a global dictionary to decompose a given audio signals
using CNSC. We only consider the coefficients correspond-
ing to the speech dictionary as the features of single time
frames. A CRF with a linear chain structure is constructed
to model the correlation between the features and speech ac-
tivities along an audio signal, and trained independently of
the noise conditions. The experiments demonstrate our ap-
proach further improves the performance of VAD in low SNR
conditions.
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