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ABSTRACT

We propose an integrated framework for large vocabulary
continuous mixed language speech recognition that handles
the accent effect in the bilingual acoustic model and the inver-
sion constraint well known to linguists in the language model.
Our asymmetric acoustic model with phone set extension im-
proves upon previous work by striking a balance between data
and phonetic knowledge. Our language model improves upon
previous work by (1) using the inversion constraint to predict
code switching points in the mixed language and (2) integrat-
ing a code-switch prediction model, a translation model and
a reconstruction model together. This integration means that
our language model avoids the pitfall of propagated error that
could arise from decoupling these steps. Finally, a WFST-
based decoder integrates the acoustic models, code-switch
language model and a monolingual language model in the
matrix language all together. Our system reduces word error
rate by 1.88% on a lecture speech corpus and by 2.43% on a
lunch conversation corpus, with statistical significance, over
the conventional bilingual acoustic model and interpolated
language model.

Index Terms— mixed language, multilingual speech
recognition

1. INTRODUCTION

Multilingual people often code-switch (CS) mixing two lan-
guages in the same sentence (intra-sentential code-switch) or
between sentences (inter-sentential code-switch). Linguistic
convention defines the principal language in a mixed language
sentence as the matrix language (ML), and the embedded lan-
guage (EL) is the secondary, foreign language [1].

The main challenge in recognizing mixed language
speech is the lack of expertly transcribed data for both acous-
tic and language model training. There are many methods
proposed to build bilingual acoustic models for both ma-
trix and embedded languages that range from mapping the

pronunciation dictionary to phonetic set combination and
acoustic model merging [2, 3, 4, 5]. Bouselmi et al. [6]
proposed a simple parallel model for context-independent
models. A major weakness in these approaches is that the pa-
rameters of acoustic models undergo an irreversible change,
and the models lose their ability to cover other (degrees of)
accents. Such models do not perform well on matrix language
speech, causing overall degradation in performance on mixed
language speech [5].

For acoustic modeling, we propose a hybrid knowledge-
based and data-driven approach for mapping phones of the
matrix language to those of the embedded language, and then
carry out a state-level acoustic model reconstruction on these
mapped phones.

For language modeling of mixed language speech, a com-
mon approach is to interpolate the language models of the
matrix and embedded languages, trained separately [2, 3, 4].
This approach allows code-switch anywhere. Vu et al. [7]
used language identification techniques to detect the bound-
aries at which the speaker code-switches and decode the
speech segments using the corresponding language model.
However, making an early decision on switch points leads to
errors being propogated to the next stage. More importantly,
linguists have found that code-switch does not occur in po-
sitions where the order of the words is inverted between the
matrix language and the embedded language [8, 9, 10]. This
constraint corresponds to an inversion constraint in statistical
machine translation [11, 12]. For the first time, we propose
to use this constraint in a code-switch language model and
incorporate a CS boundary prediction model, a CS translation
model and a reconstruction model in a single weighted finite
state transducer framework.

2. ASYMMETRIC ACOUSTIC MODELING

We postulate that mixed language speakers pronounce the em-
bedded language speech in a range of accents and propose a
hybrid approach of phonetic mapping using a similarity mea-
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sure with an acoustic model reconstruction approach to recog-
nize code-switch speech. The similarity measure is based on
the alignment of the canonical transcription of speech in the
embedded language and its recognition results using the ma-
trix language recognizer, in other words the distances between
the observations of the accented speech in the embedded lan-
guage and the models of the matrix language. The cluster-
ing of the Mandarin and English phones was done using a
pure data-driven approach in our previous work [3]. The new
approach presented here is a hybrid of rule-based and data-
driven methods to strike a balance between data and knowl-
edge since there exist variations between the mixed language
speech data and the linguistic knowledge of the matrix lan-
guage and the embedded language.

In our work, we classify the Mandarin phone set and En-
glish phone set into 10 phone classes, each using linguistic
knowledge such as the articulatory feature. The phone classes
constraint is that each phone in the English data can only be
recognized as a Mandarin phone with the same articulatory
feature. Our proposed method is as follows:

1. Apply the Mandarin recognizer to the English data to
obtain hypothetical Mandarin phonetic transcriptions.
Obtain a phonetic confusion matrix between Mandarin
and English by aligning the reference English phonetic
transcriptions with the time-label information and hy-
pothetical Mandarin phonetic transcriptions;

2. Likelihood ratio tests are used as a confidence mea-
sure to obtain phone clustering between the Chinese
and English phone sets from 1). Elements of Man-
darin initials/finals and English phone sequences with
the largest confusion probability can be mapped and
removed from the probability matrix. This clustering
procedure continues until the Chinese initials/finals and
English phones are clustered into a bilingual phone set;

3. For a given pair of bilingual and accented English de-
cision trees of mapped phones, the leaf nodes of in-
dividual states of individual phones are merged accord-
ing to an acoustic distance measure between the trained
acoustic models. The new output distribution of the
merged mixed language acoustic model is then a linear
interpolation of the pre-trained models at the state level.

The new output distribution of the reconstructed model is rep-
resented as

P ′(x|bj) = λP (x|bj) + (1− λ)
N∑
i=1

P (x|ei)P (ei|bj) (1)

where P (x|bj) is the output distribution of the pre-trained
bilingual model, P (x|ei) is the output distribution of the ac-
cented English model, λ is a linear interpolation coefficient
and is the probability of the bilingual model being recognized

as itself. In addition, i = 1, 2, ..., N and N is the total num-
ber of merged nodes from the accented decision tree; ei is one
possible state from the accented decision tree to be tied to the
state in the bilingual decision tree. P (ei|bj) is the confusion
probability between the bilingual model and accented English
model. We use the bilingual model to decode the phone string
in the accented English, use the same model to perform forced
alignment, and obtain a confusion matrix.

3. CODE-SWITCH LANGUAGE MODELING WITH
SYNTACTIC CONSTRAINT

We proposed a code-switch language model, which is the
composition of a monolingual language model in the matrix
language, a code-switch boundary prediction model, a code-
switch translation model and a reconstruction model to avoid
propagated error and to incorporate a syntactic constraint of
code-switch speech [13].
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where WM
1 is in mixed language, and wm

1 is in the matrix
language. The code-switch language model can be modeled
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where P (vn1 , n|wm
1 ) is the code-switch boundary prediction

model, P (un1 |vn1 , wm
1 ) is the code-switch translation model,

and P (WM
1 |un1 , vn1 , wm

1 ) is the reconstruction model. A
word sequence in the matrix language wm

1 is segmented into
phrases, vn1 , and un1 is a phrase sequence in mixed language.

3.1. Code-switch Boundary Prediction Model

According to linguistics [8, 9, 10], a code-switch can only
occur at points where the word order requirements of both the
matrix and embedded languages are satisfied. Figure 1 shows
an example of a Mandarin-English mixed language sentence.
For example, code-switch is not permissible between the first
three words with syntactic inversions.

We propose to train the code-switch boundary prediction
model on the word-aligned parallel sentences in the matrix
and embedded languages. The code-switch boundary predic-
tion model is the probabilities of a sequence of words seg-
mented into a sequence of phrases. We define a phrase as a
word or a concatenation of words in which there are one or
more inversions of a word-aligned sentence pair.

P (vn1 , n|wm
1 ) =

1

Zn

n∏
i=1

P (vi) (4)
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Fig. 1. An example of permissible code-switch points

Zn =
∑
vn
1

m∏
k=1

P (vi) (5)

where P (vi) can be approximated by the relative fre-
quency of the i-th phrase.

3.2. Code-switch Translation Model

The code-switch translation model trains the probability of
code-switch at the phrase boundaries given by the above
model. The code-switch translation probability, P (ui1|vi1),
is assumed to depend on the previous phrase, vi−1. π(x)
specifies the code-switch translation probability distribution
trained from word-aligned bilingual sentences.x is an n-tuple,
which includes the word code-switch probability P (e|w), the
reordering probability

∏k
j=1 P (rj |j, k, l), the phrase trans-

lation probability Pr(u|v) and the phrase penalty Pen(v),
where w is an ML word, e is an EL word, k, l are the lengths
of phrases in the matrix language and the embedded lan-
guage, rj denotes that the j-th word is aligned to the rj-th EL
word, v is an ML phrase, and u is an EL phrase.

We use a logit regression model to describe the code-
switch translation probability

logit[π(x)] = log(
π(x)

1− π(x)
) = α+

∑
βjxj (6)

where βj is the effect of the j-th item in the n-tuple x on
the logit of the code-switch translation probabilities control-
ling the other items of x. The code-switch translation proba-
bility

π(x) =
exp(α+

∑
βjxj)

1 + exp(α+
∑
βjxj)

(7)

P (ui|vi1) =
{

1− π(xi
i−1) ui = vi

π(xi
i−1) otherwise

(8)

where xi
i−1is the n-tuple of the word alignment probabilities,

the reordering probability and the phrase penalty of the (i −
1)th and ith phrases.

3.3. Code-switch Reconstruction Model

The reconstruction model assigns probabilities to a sequence
of mixed language words, WM

1 , given that the words in the
sequence are the same as the words of the phrases, un1

P (WM
1 |un1 , vn1 , n, wm

1 ) =

n∏
i=1

P (WEi

Si
|ui) (9)

P (WEi

Si
|ui) =

{
1
Zi

∏Ei

j=Si
q(Wj) WEi

Si
= ui

0 otherwise
(10)

Zi =
∑
un
1

Ei∏
j=Si

p(Wj) (11)

where p(Wj) is the frequency of occurrences of word Wj ob-
tained from the bilingual sentences. WEi

Si
= ui indicates that

the word sequence WEi

Si
is exactly the same as the phrase ui,

Si is the start of phrase ui, and Ei is the end of phrase ui.

4. EXPERIMENTS

The acoustic models used throughout our paper are state-
clustered crossword tri-phone HMMs with 16 Gaussian mix-
ture output densities per state. We use the 39 phone set from
the CMU dictionary, 21 Mandarin standard initials, 37 Man-
darin finals, and 6 zero initials. The pronunciation dictionary
is obtained by modifying dictionaries in the matrix and em-
bedded languages using the phone set. The acoustic models
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are adapted to the speakers using maximum likelihood lin-
ear regression as a baseline. A WFST decoder is used for
decoding [14].

4.1. Speech Corpora and Baseline Acoustic Models

We compare our proposed framework to baseline systems
consisting ofa bilingual acoustic model adapted to accented
speech and an interpolated language model. The bilingual
acoustic model is trained from 160 hours of speech from
GALE Chinese broadcast conversation, 40 hours of speech
from GALE English broadcast conversation, and three hours
of in-house nonnative English data.

We evaluate our proposed method on two corpora: (1) a
lecture speech corpus of a digital speech processing course
recorded at National Taiwan University, and (2) a lunch con-
versation corpus recorded at the Hong Kong University of
Science and Technology. The lecture speech contains 16%
embedded English words. 18 hours of the lecture speech is
used for adaptation of the acoustic models, 0.9 hours of the
speech is used as a development set, and 1037 utterances are
used as a test set. The conversation speech contains 22% En-
glish words [15]. 127 minutes of the conversation speech is
used to adapt acoustic models, 26 minutes of the speech is
used as a development set, and 280 utterances are used as a
test set.

4.2. Text Corpora and Baseline Language Models

250,000 sentences from digital speech processing conference
papers, power point slides and web data are used for language
model training and parallel sentence generation for the lec-
ture speech recognition task (LM data 1). 250,000 sentences
of the Gale conversational speech transcription are used for
language model training and parallel sentence generation for
the lunch conversion speech recognition (LM data 2). The
baseline language model for the lecture speech recognition is
an interpolation of the language model trained from LM data
1 and the language model trained on the transcriptions of the
mixed language lecture speech. Another baseline model of
the lunch conversations recognition is trained from LM data
2 and interpolated with the language model trained from the
transcriptions of the mixed language lunch conversations.

4.3. Experimental Results

Table 1 shows the word error rates (WER) of the experiments
on the mixed language lecture speech and lunch conver-
sations. The asymmetric acoustic model outperforms the
bilingual acoustic models by 2.8% on the lecture speech data
and 4.03% on the lunch conversation data. Compared to
the adapted acoustic models, the asymmetric acoustic model
gives about 1.04% word error rate reduction on the lecture
speech data and 1.29% word error rate reduction on the
lunch conversation data. Moreover, the code-switch language

model (CSLM) reduces the word error rate by 0.84% on the
lecture speech data and 1.14% on the lunch conversation data.
All the WER reductions are statistically significant at 99%.

Table 1. Our proposed system outperforms the baselines in
terms of WER

Lecture speech Lunch conversations
BilingualAM

+InterpolatedLM 37.53% 50.23%
AdaptedAM

+InterpolatedLM 35.77% 47.49%
AsymmAM

+InterpolatedLM 34.73% 46.20%
AsymmAM

+Code-switchLM 33.89% 45.06%

5. CONCLUSIONS

In this paper, we propose an integrated mixed language
speech recognition framework that incorporates asymmet-
ric acoustic models and the language model with syntactic
inversion constraints. Our language model is composed of
a code-switch prediction model, which learns from word-
aligned parallel sentences to give the permissible CS points,
a translation model, which is obtained by logit regression
and incorporates syntactic inversion constraints, and a recon-
struction model in an integrated way. A maximum a posterior
framework employs weighted finite state transducers in the
process of final decoding, integrating the asymmetric acoustic
models, a code-switch language model, and a monolingual
language model in the matrix language. We tested our system
on two tasks, in mixed language lecture speech recognition
and in mixed language lunch conversation. Our system re-
duces word error rate in a baseline of the adapted acoustic
models and the interpolated language model by 1.88% in the
first task and by 2.43% in the second task. Our model also
outperforms another baseline, that of the asymmetric acoustic
models and the interpolated language model, by 0.84% in the
first task and by 1.14% in the second task. All results are
statistically significant. In addition, our method reduces word
error rates for both the matrix language and the embedded
language.
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