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ABSTRACT

Phonotactic modeling has become a widely used means for speaker,
language, and dialect recognition. This paper explores variations to
supervector pre-processing for phone recognition–support vector ma-
chines (PRSVM) based dialect identification. The aspects studied are:
(i) normalization of supervector dimensions in the pre-squashing stage,
(ii) impact of alternative squashing functions, and (iii) N-gram selection
for supervector dimensionality reduction. In (i) and (ii), we find that
several alternatives to commonly used approaches can provide moder-
ate, yet consistent performance improvements. In (iii), a newly pro-
posed dialect salience measure is applied in supervector dimension se-
lection and compared to a common N-gram frequency based selection.
The results show a strong correlation between dialect-salience and fre-
quency of occurrence in N-grams. The evaluations in this study are
conducted on a corpus of Chinese dialects, a Pan-Arabic corpus, and a
set of Arabic CTS corpora.

Index Terms— Dialect identification, phonotactic modeling,
PRSVM, dialect-salience, squashing function

1. INTRODUCTION

State-of-the-art dialect identification (DID) systems share similar tech-
niques with speaker and language recognition. Cepstral features with
shifted delta cepstra (SDC) [1, 2], Gaussian mixture modeling with
universal background models (GMM-UBM) and GMM supervectors
[3, 4], phonotactic models realized by parallel phone recognizers and
language modeling (PPRLM) [5–8], and phone recognizers combined
with support vector machines (PRSVM) [9, 10] are highly popular in
current systems as seen in NIST-SRE [11] and NIST-LRE [12] submis-
sions.

The focus of our study is on PRSVM-based phonotactic model-
ing for DID. In PRSVM, speech signal is first decoded by a phone
recognizer into a sequence of phones [9] or phone lattices [10]. The
phone recognizer (PR) can be trained on a language or a mixture of
languages that are not necessarily related to the dialects targeted in
the DID task [4]. The idea is that when decoding an utterance, even
from an unknown language, the PR will generate sequence of phones
or phone lattices that reflect the PR’s acoustic model states closest to the
processed signal, and different dialects may generate different PR out-
puts. PR outputs are subsequently normalized, processed by a squash-
ing function, stacked into supervectors, and passed to SVM classifiers.

In our recent study on PRSVM-based Arabic DID [13], we ob-
served that replacing the traditional logarithmic squashing function in
the PRSVM supervector pre-processing stage by alternative functions,
sigmoid and hard limit, had a positive impact on the system perfor-
mance. The goal of our current study is to verify whether the observed
performance gains can transfer to a set of dialects drawn from another
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language (Chinese dialects), and investigate further options in super-
vector pre-processing.

Three aspects of the PRSVM supervector pre-processing are stud-
ied: (i) scaling and normalization of N-gram relative frequencies prior
to applying squashing, (ii) efficiency of traditional versus alternative
squashing functions, and (iii) selection of N-grams for supervector di-
mension reduction. To reduce the computational overhead, it is a com-
mon practice in literature to preserve only dimensions corresponding to
the most frequently occurring N-grams [14] and drop the rest. However,
to our best knowledge, there has not been a study on the correlation be-
tween the frequency of N-grams and their dialect salience. In theory,
some frequent N-grams could appear with similar probability in all or
a majority of the target dialect classes and be of a little use to their dis-
crimination. To analyze this, we propose a so called dialect-salience
measure that rank orders N-grams based on the non-uniformity of their
occurrence across dialects. Frequency-based and dialect-salience based
dimension reduction are compared side-by-side by utilizing the respec-
tive reduced supervectors in DID tasks, as well as by directly comparing
the overlap of the N-gram sets selected by the two methods.

All approaches discussed in this study are evaluated on one Chi-
nese and two Arabic DID data sets, each capturing four dialect classes.
PRSVMs based on nine BUT phone recognizers [15] are used in the
evaluations.

2. CORPORA

The two Arabic data sets used in this paper, a Pan-Arabic corpus and a
set of Arabic CTS corpora, are identical with our previous study [13].

The CTS set comprises the following corpora: Iraqi Arabic CTS
(IRQ; LDC2006S45), Gulf Arabic CTS (GLF; LDC2006S43), Arabic
CTS Levantine Fisher Training Data Set 3 (LEV; LDC2005S07), and
CALLHOME Egyptian Arabic Speech (EGY; LDC97S45 and supple-
ment LDC2002S37). It is noted that these databases were acquired by
LDC for the purpose of automatic speech recognition projects and LDC
as such did not make any suggestions for their use in dialect identifica-
tion. In [13], we found that each dialect data in these CTS collections
capture unique and fairly distinctive long-term channel characteristics
that are sufficient themselves for performing a successful DID. The rea-
son for using the CTS set here is that a similar CTS set was previously
used in Arabic DID studies in [14,16,17] (where LEV was represented
by Levantine Arabic CTS, LDC2007S01 instead of Fisher) and hence,
the performance of the systems here can be directly compared to the
previous studies.

The Pan-Arabic corpus [18] consists of Arabic dialect data from
five different regions, including United Arab Emirates (AE), Egypt
(EGY), Iraq (IRQ), Palestine (PS), and Syria (SY). Each dialect set
captures conversations of 100 speakers (genders balanced). In every
session, two speakers complete four combined conversational record-
ings using lapel microphones. Four dialects – PS, IRQ, SY, EGY are
used in the evaluations. The Chinese corpus [18] utilized in our study
consists of four Chinese dialects (sub-languages): Mandarin (CMN),
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Cantonese (YU), Xiang (HSN), and Wu (WU). All data in this corpus
capture spontaneous conversational noise-free speech.

For the purpose of PRSVM training and evaluation, all recordings
were cut into approximately 10–12 second long segments. Training
and test sets comprise non-overlapping speaker groups. The amount
of training and evaluation data for the three DID sets is summarized in
Table 1.

Chinese Arabic CTS Pan-Arabic 
Dialect CMN HSN WU YU GLF IRQ LEV EGY PS IRQ SY EGY

Train (Hrs) 6.3 8.9 5.1 7.7 32.7 16.1 11.9 33.9 10.6 9.3 10.8 9.9 
Test (Hrs) 2.2 2.9 1.7 2.6 2.0 2.3 1.6 10.1 2.8 2.7 2.5 2.6 

Avg. Dur. 10.0 sec 11.3 sec 11.9 sec 

Table 1. Distribution of speech samples in Chinese and Arabic sets.

3. PRSVM SUPERVECTOR PRE-PROCESSING

In a typical PRSVM system, relative N-gram frequencies observed at
the PR output for a training or test token are stacked into a supervec-
tor, each dimension being mapped to a unique N-gram. Subsequently,
the dimensions are normalized by the inverse square root of the global
frequencies of the corresponding N-grams [9] (global frequency nor-
malization, GFN); the global frequency is estimated from the training
tokens across classes. In the next step, a logarithmic squashing function
g (x) = log (x) + 1 is applied. The purpose of GFN combined with
squashing is to equalize the typicality of N-grams across all classes and
limit the probability that some supervector dimension would dominate
the inner product in the SVM kernel [10].

To reduce the computational overhead, only frequent N-grams are
usually included in the supervector and utilized in the subsequent SVM
modeling [4] (frequency-based supervector dimensionality reduction).
Finally, before entering SVM, the supervectors can go through an adap-
tation stage. Our study follows [19] where a so called universal N-gram
language model is MAP adapted towards the token’s supervector. The
adaptation helps reduce sparseness of the supervectors caused by the
limited number of N-grams occurring in short tokens [9]. In this text,
the universal language model is called a universal background super-
vector (UBS) for the resemblance with the universal background model
(UBM) in the GMM-UBM paradigm.

3.1. Pre-Squashing Normalizations

In the pre-squashing stage, the impact of the following normalizations
is investigated.
Within-dimension mean/variance norm (WD MVN): for each N-
gram, mean and variance of its relative frequency (no squashing) is
estimated from training tokens across all classes. During the supervec-
tor extraction for SVM modeling and classification, the stored ‘train’
means and variances are used for dimension-wise MVN. This can be
viewed as alternative or complementary norm to GFN as discussed
above, only here rather the means and variance of across-class priors
are equalized.
Across-dimension mean/variance norm (AD MVN): mean and vari-
ance are estimated across the elements of an individual supervector, and
are applied in MVN of the supervector elements. AD MVN normalizes
the frequency profile seen across the supervector dimensions. In AD
MVN, the variance normalization is paired with a multiplicative con-
stant α to control the dynamics of the N-gram normalized frequencies
(NNF):

NNFADMV N
t,m =

(
NNFt,m −NNFt

)/√
αvar (NNFt) (1)

Sig(

x

x

(x )

Sig(xx)

Fig. 1. Transformation of N-gram frequency distribution by sigmoid squashing
function. The rate of expansion or compression (contour rounding) of distribu-
tion tails can be controlled through altering the pre-squash distribution variance
by α in AD MVN. Increasing variance of the pre-squash distribution will re-
sults in stronger compression of the distribution tails due to sigmoid limiting
properties.

where t is the token index and m is the supervector dimension index.
As will be discussed in Sec. 3.2, when combined with a nonlinear
squashing function, α can be effectively used to shape contours of the
frequency distributions.
GFN with uniform priors: instead of global N-gram frequencies ex-
tracted from the training set (train priors), uniform N-gram priors are
substituted in the square root term. This uniform amplitude norm is
introduced to allow for ‘switching-off’ the traditional GFN and yet nu-
merically accommodate the log squashing function (see Sec. 4 for de-
tails).

3.2. Squashing Functions

Besides the traditional log function mentioned at the beginning of Sec.
3, the following two squashing functions are considered (i) hard limit,
(ii) sigmoid. Hard limit was introduced in [13] based on the observation
that with certain flavors of GFN applied only to non-zero supervector
dimensions, the normalized frequencies tended to occupy two numeri-
cally coherent clusters (zeros vs. relatively narrow non-zero interval).
This motivated the introduction of a hard limit function, where zero
dimensions are kept zero and non-zero dimensions are replaced by a
constant. This rather crude function merely detects the presence or ab-
sence of an N-gram in the token and ignores any prior knowledge and
the actual N-gram counts in the token, yet in [13] it consistently out-
performed the GFN–log setup in all PRSVMs on two Arabic DID sets.
Sigmoid,

g (x) =
1

1 + e−x
(2)

was also introduced in [13] as a squashing alternative and found to
provide competitive results to log and hard limit. Combined with AD
MVN, α in Eq. 1 can be used to control the variance of relative fre-
quencies and together with Eq. 2 also their distributions (see Fig. 1).
Expanding the variance will push the distribution tails into the saturated
regions in the sigmoid, resulting in the compression of the tails. This
may help equalize the impact of N-gram outliers (extremely frequent
or extremely rare) on the subsequent SVM modeling.

3.3. Supervector Dimension Reduction

As an alternative to the traditional frequency-based dimensionality re-
duction (see Introduction and the overview at the beginning of Sec. 3),
we propose a so called dialect salience measure for N-gram selection
(see Table 2). For each dialect training set, a separate UBS is calculated.
Here, GFN and squashing are not applied and the relative N-gram fre-
quencies represent the estimation of dialect specific N-gram priors. In
the second step, the dialect specific UBS’ are compared dimension by
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Dialect Salience Measure for N-gram Selection: 
Initialize dialect-specific universal background supervectors 
(UBS) by dialect-specific N-gram frequencies observed in the 
training data;

Normalize UBS’ dimensions by the total number of N-grams 
seen in the corresponding dialect training data (i.e., convert 
frequencies into prior probability estimates); the normalized 
dimensions are denoted normalized N-gram frequencies
(NNF);

In each dimension m, calculate cumulative distance (CD)
between all dialect UBS pairs:

, ,
1 1

, ,  
L L

m m k m l
k l

CD d NNF NNF k l ,

where L is the number of dialects, m is the UBS dimension 
index, k and l are dialect indices, and d() is the distance 
measure. We choose: 

, , , ,, ;m k m l m k m ld NNF NNF NNF NNF

Rank order UBS dimensions in descending order by their 
associated cumulative distances CD;

Include only top ranking dimensions (representing most 
dialect-salient N-grams) in the dimension-reduced SVM 
supervector.

Table 2. Dialect salience measure and its application to supervector dimension
selection.

dimension. A UBS dimension with high frequencies for some dialects
and low frequencies for others is ranked high, a dimension with nearly
uniform frequency distribution across dialects is ranked low. The rank-
ing, a dialect salience measure, is calculated as a sum of relative fre-
quency differences for all non-trivial dialect pairs, assuring that higher
variability of frequencies across dialects will result in a higher ranking.
Dimensions with higher rankings are considered more dialect salient
as they represent N-grams that occur frequently in some dialects and
rarely in others.

 Logarithm Hard
limit Sigmoid

Prior
Norm

Train 
Priors

Uni-
form None Train 

Priors None

MVN Off Off Off Off Off WD AD 
EN 18.4 18.4 17.5 16.7 17.4 15.4 14.7 
CZ 23.5 23.8 22.7 22.9 22.8 22.1 21.6 
HU 23.0 23.1 22.1 21.7 22.1 21.0 20.4 
RU 21.9 21.9 22.0 21.4 22.2 20.0 19.6 

GER 15.0 14.9 14.2 13.4 14.0 13.0 12.7 
HIN 12.8 13.0 12.0 11.7 12.1 11.4 10.5 
JAP 16.2 16.0 15.6 14.8 15.5 13.5 12.8 

MAN 13.2 13.4 12.4 12.0 12.3 12.0 11.1 
SPA 14.3 14.1 13.3 12.8 13.3 11.8 11.2 

minEER 12.8 13.0 12.0 11.7 12.1 11.4 10.5 
avgEER 17.6 17.6 16.9 16.4 16.9 15.6 15.0 

Table 3. Chinese DID task; comparison of squashing and pre-squashing strate-
gies.

4. EXPERIMENTAL SETUP AND EVALUATIONS

Nine BUT phone recognizers [15], English, Czech, Hungarian, Rus-
sian, German, Hindi, Japanese, Mandarin, and Spanish, are used to

 Logarithm Hard
limit Sigmoid

Prior
Norm

Train 
Priors

Uni-
form None Train 

Priors None

MVN Off Off Off Off Off WD AD 
EN 7.3 7.3 6.8 6.7 6.8 6.7 6.4 
CZ 16.3 16.2 15.7 15.8 15.9 15.3 15.0 
HU 14.6 14.7 14.2 14.2 14.4 13.9 13.7 
RU 14.8 14.9 14.5 14.3 14.5 14.1 13.8 

GER 12.9 13.0 12.1 12.0 12.1 11.8 11.6 
HIN 12.8 12.9 11.7 11.5 11.7 11.2 10.9 
JAP 15.3 14.8 14.4 14.0 14.3 13.9 13.5 

MAN 12.2 12.3 11.4 11.3 11.4 11.2 10.7 
SPA 14.4 14.4 13.4 13.1 13.4 12.7 12.3 

minEER 7.3 7.3 6.8 6.7 6.8 6.7 6.4 
avgEER 13.4 13.4 12.7 12.6 12.7 12.3 12.0 

Table 4. Arabic CTS DID task; comparison of squashing and pre-squashing
strategies.

build dialect specific PRSVMs. All PRSVM setups utilize UBS MAP
adaptation and (besides the dialect salience experiments), a frequency-
based 70% dimension reduction. For a given DID dataset, a binary
SVM classifier is trained for each target dialect. The training data from
the remaining dialects are pooled together and used to represent the
anti-class in the training procedure. In the evaluation, the task is to
decide whether the token contains the target dialect or not (pick 1-vs-
3). The PRSVM performance is reported by means of an equal error
rate (EER) averaged per PR across four dialect-specific SVMs. Perfor-
mance of individual PR-based systems is presented together with mi-
nEER and avgEER measures representing the best performance found
in each category and the average performance across all PRSVMs.

Methods from Sec. 3.1 and 3.2 are evaluated for the three DID
tasks in Tables 3, 4, and 5. The row Prior Norm denotes whether the
standard GFN, Train Priors, GFN with uniform priors, Uniform, or no
GFN, None, is applied. Note that log squashing is not presented in com-
bination with None as it yielded a poor performance. Instead, Uniform
that ignores N-gram priors and substitutes them for a uniform proba-
bility is used. Hard limit is not combined with pre-squashing norms
as they would not benefit the N-gram detection. On the other hand,
MAP adaptation is effective with hard limit as hard limit UBS will con-
tain non-binary values and so will the adapted supervectors. Sigmoid
is combined with GFN on/off and with within-dimension (WD) and
across dimension (AD) MVN. WD/AD MVN was not combined with
log squashing as MVN yields distributions centered to zero.

Among the three DID tasks, the Arabic CTS gives the most opti-
mistic numbers, however as discussed in [13], the dialect-specific chan-
nel information is a significant contributor here. The Chinese DID task
may be easier than the Pan-Arabic as the Chinese dialects here are in
fact sub-languages with a shared grammar and written form, but com-
pletely different spoken form (up to the point of being unintelligible to
the native speaker of one of the dialects).

Considering the baseline performance in the first column of the
tables, the avgEER is absolutely reduced by 2.9 % for the Pan-Arabic
corpus and by 3.8% for CTS compared to [13]. This can be attributed to
the effects of MAP adaptation and frequency-based dimension reduc-
tion which were not employed in [13]. Compared to [14], where the
best performance of a single PRSVM on the CTS corpora was 9.53 %,
our best baseline PRSVM (EN) provides an absolute improvement of
2.23 % EER (Table 4).

The overall trends seen in the Tables can be summarized as follows.
Standard GFN, Train Priors and GFN utilizing uniform priors, Uni-
form, combined with log squashing, provide almost identical avgEER
on all three DID tasks. With one exception (RU, Chinese), hard limit al-
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 Logarithm Hard
limit Sigmoid

Prior
Norm

Train 
Priors

Uni-
form None Train 

Priors None

MVN Off Off Off Off Off WD AD 
EN 30.9 31.0 29.6 29.3 29.7 29.1 29.4 
CZ 33.0 32.8 32.4 32.1 32.2 32.3 31.6 
HU 33.4 33.2 33.0 33.0 33.0 32.5 32.3 
RU 34.0 34.1 33.3 33.3 33.5 32.9 32.8 

GER 30.0 29.9 29.3 28.8 29.4 28.1 27.8 
HIN 27.8 27.9 27.1 27.1 27.2 26.5 26.3 
JAP 31.5 31.4 31.0 30.8 30.9 29.7 29.6 

MAN 28.4 28.2 27.9 27.9 28.0 26.8 26.7 
SPA 30.1 29.8 28.9 28.4 28.7 27.5 27.7 

minEER 27.8 27.9 27.1 27.1 27.2 26.5 26.3 
avgEER 31.0 30.9 30.3 30.1 30.3 29.5 29.3 

Table 5. Pan-Arabic DID task; comparison of squashing and pre-squashing
strategies.

ways provides reduced EER compared to the log squashing setups. On
average, GFN–sigmoid (Train Priors) further reduces the EER of hard
limit in all three DID tasks. Sigmoid without GFN and MVN performs
somewhat worse than with GFN employed. Combining WD MVD and
sigmoid provides on average better EER than sigmoid without MVD or
any non-sigmoid setup. The combination of AD MVD–sigmoid yields
the lowest EERs out of all setups on all three DID tasks (α was ex-
perimentally set to 0.16 and kept fixed in all systems). The absolute
avgEER reduction over the GFN–log baseline ranges from 2.6 % to
1.7 %, which is a moderate improvement, yet the size of the corpora
utilized in the experiments, and the consistency of the trends across
various PRSVMs suggest that this improvement is significant.

Since the Uniform norm is found successful in the evaluations, the
authors assume that the log squashing function simply requires the rel-
ative N-gram frequencies appearing in a certain ‘typical’ range and that
the non-uniformity of the N-gram priors is probably not exploited to
such an extent as expected. Our preliminary results obtained close to
the submission deadline suggest that also the combination Uniform–
sigmoid yields lower EERs than Train Priors, even though the improve-
ment does not reach the values of the sigmoid AD MVN setup.

Finally, the hypothesis that the most frequently observed N-grams
in the pooled dialect training data are also the most discriminative ones
is tested by confronting the frequency-based and dialect salience based
N-gram selection. The results are demonstrated on the Chinese DID
task in Figures 2 and 3. Figure 2 shows the average N-gram overlap for
various rates of reduction. The trend is averaged across all nine phone
recognition setups. It can be seen that the overlap decreases with the
reduction rate, however, even for a 90 % dimension reduction, nearly
85 % of the N-grams are shared by the two methods. Also, it can be
seen that this trend is quite independent of the phone recognizer used, in
spite of the fact that different phone recognizers utilize completely dif-
ferent N-gram lexicons. Figure 3 compares the PRSVM performance
as a function of the reduction rate for the two methods. It can be seen
that the dialect-salient methods provides more discriminative supervec-
tors for reduction rates over 60 %, and that at 70 %, the average EER is
actually slightly improved compared to using the complete supervector.
The results here suggest there is a high correlation between the N-gram
frequency and its dialect salience.

5. RELATION TO PRIOR WORK

The study focused on the supervector pre-processing strategies for
PRSVM based dialect identification. The concepts presented here built
upon paradigms pioneered and practiced in [4,9,10,14,19]. Compared
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to those studies, our focus is on alternative frequency normalizations,
squashing functions, and dimension selection. In the last case, we
investigated the correlation between the frequency of N-gram occur-
rences and their dialect salience, which, to our best knowledge, has not
been previously thoroughly considered. Alternative techniques to term
selection and feature reduction can be found in [20]. Squashing func-
tions inspired by other types of activation functions in neural networks
(e.g., [21]) may further benefit PRSVM DID.

6. CONCLUSIONS

We have investigated the efficiency of within dimension and across di-
mension mean-variance normalization, global frequency normalization
with uniform N-gram prior probabilities, alternative squashing func-
tions hard limit and sigmoid, and dialect-salience based dimension re-
duction. Evaluations on three different DID tasks suggest that sigmoid
squashing function combined with across dimension mean-variance
normalization can provide consistent performance improvements over
the traditional pre-processing strategy. In the second part of the study, a
newly proposed dialect salience measure was applied in the analysis of
the most frequent N-grams and has shown a strong correlation between
N-gram frequency and dialect salience.
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